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Abstract 
The actual capability of monitoring mechanical systems is based on new generation of sensors, modeling and 

algorithms for the detection of properties, operating conditions and/or failures of the monitored system. The 

present paper, on the basis of several projects in progress at the University La Sapienza, Rome, illustrates the 

combination of new sensing technologies and signal processing techniques of the acquired data, based on 

appropriate modeling of the monitored system. Particular emphasis is given to optical sensors and their 

application to keep under control special mechanical components as railways, viaducts, tires, and to the 

development of new measurement devices based on fluid-structure interaction.  

 

1     Introduction 
 

This paper proposes new technologies for monitoring mechanical systems and civil structures. More 

specifically monitoring and damage detection of structures, monitoring of mechanical contacts, identification 

of flow speed based on optical sensors have been developed and used recently in several applications. These 

activities are carried on at La Sapienza University Labs, namely in the Department of Mechanical and 

Aerospace Engineering and in the Nanotechnology Center – CNIS, Rome.  

Some of the studied applications are aimed to shape monitoring, as those referred to sailing boat musts 

and airplane wings with the final goal of controlling their deflection for performance efficiency; others have 

diagnostic purposes, as topics on train rails, motorway viaducts, high speed boat drones and engines; others, 

finally, are devoted to control mechanical systems, specifically studies addressed to car suspensions and 

tires, with emphasis to experimental investigation of rolling phenomena, structural health and grip. Each of 

these applications require of course appropriate sensors, efficient modeling of the considered system and 

specific hardware and software to obtain the expected goals in a global process, here called monitoring 

technology of the system S. 

Philosophically speaking, when addressing a particular engineering problem in the general context stated 

before, we define an identification goal. It is supposed that we have in mind or can develop some specific 

algorithms or procedures that can help to reach that goal, with the support of an appropriate set of 

measurements on a limited part of the system and a limited set of physical variables observed by dedicated 

sensors.  

More precisely, )( jk xV  represents the physical variables kV , Mk ,...2,1 , measured at points 

Njx j ,...2,1,  . The whole system S is identified by a finite set of M variables  )(XVk  defined over a 

continuous domain X. In general, the monitoring system uses a set of M’< M variables, accessible only over 

a limited subset of points jx X. Let us call the set  )( jk xV  ( ',...2,1 Mk  ) the monitored system mS , 

complementary to the unmonitored system uS , that contains the information of interest to reach the required 

goal, such that um SSS  . Very often, some model of the system should be part of the monitoring 

process. In fact, the model consists frequently of an operator L (differential, integral or of different nature) 
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such that   0)( xVkL . This equation permits to correlate implicitly um SS to : the procedure used to 

extract uS form the previous equation is the identification algorithm.  

Such elements, the goal, the sensors, the model and the algorithm are strictly interrelated with one 

another: to reach a particular goal we may follow different options, each one related to some method and 

requiring some knowledge of the system that in general can be obtained by appropriate measurements or/and 

appropriate description of the system. Once this information is available, the resulting data must be 

subsequently processed to obtain the expected goal. Sometimes only the experimental information can be 

sufficient, without the need of a system modeling, especially when the goal involves a simple data 

processing, but whenever the problem becomes more complex, some information on the system itself can be 

useful or strictly necessary. 

The algorithm can involve either simple or sophisticated data processing or require the development of 

techniques focused to manipulate such data and obtain the necessary result. 

Thus, the monitoring technology is made of different dowels that, in function of the engineering 

applications, may have different contents. With reference to the applications cited above, we will describe in 

the following few examples, related to trains, tires and related infrastructures as viaducts, bridges and 

railways, showing how the three dowels of the monitoring technology, sensors, modelling and signal 

processing, play together when applied to real systems of industrial interest, and present some significant 

engineering results. 

 
2    Localized damage detection on road viaducts and bridges.  
 

So far, this piece of work was theoretically developed and tested on a beam model. The technique is able 

to identify presence and location of a damage along the beam due to a travelling load, as well as the load 

characteristics, such as the mass and speed, for stationary and time-dependent systems. The measured data 

are processed by the Hilbert-Huang technique [1]. The identification capabilities of the proposed techniques 

are studied by varying the damage locations, crack depths and load characteristics [2]. The effect of ambient 

noise is also taken into account. Theoretical and numerical results show that the proposed method is rather 

accurate: the results are not very sensitive to the crack depth and ambient noise, while they are sensibly 

affected by the damage location and by the speed of the moving load. The theoretical analysis identifies a 

characteristic load velocity interval, depending on both the first natural frequency of the beam and the 

damage location, within which the HHT can be successfully applied. 

 

       2.1   Modeling 
 

The use of vibration measurements for structural health monitoring has been applied in many engineering 

fields during the last three decades [3]. Nearly all the developed data-processing techniques depend strongly 

on the loading conditions and the experimental setup. Generally, a typical experimental setup relies on the 

acquisition, from multiple measurement points, of free or forced vibrations, purposely excited by a known, 

controllable, force. However, it is very difficult, costly and time consuming to generate the data in this way 

for real civil structures. Moreover only a few measurement points are usually available.  

A very attractive and challenging field of research is related to the use of the forced response under 

ambient loads, such as vehicular traffic. There are indeed several connected problems: (i) loading conditions 

are not often controllable, (ii) the signal to noise ratio is highly affected by the moving load mass (the lighter 

the weight the poorer the signal), (iii) ambient load often produces nonstationary and nonlinear signals, (iv) 

massive travelling loads are often characterized by low frequencies, narrow bandwidth spectra, and are not 

able to excite wavelengths comparable with the characteristic dimension of the damage. The forced response 

of intact or slightly damaged civil structures is generally approximated by linear models. As the severity of 

the damage increases, structures exhibit a nonlinear behavior, especially when the moving load crosses the 

damaged section. Conventional techniques are not suited for analyzing such cases [4-9]. In fact, in real 

applications the characteristic of the load are not easy amenable of monitoring, and an output-only 

identification approach should be adopted. Here the focus is addressed to forced excitations generated by 

moving loads, producing nonstationary responses and time-varying modal parameters, that received 
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significant attention in the last years [10-13]. 

To overcome the mentioned problems, in 1998 Huang et al. [1] developed an innovative time-frequency 

technique, known as Hilbert–Huang transform (HHT), able to analyze nonlinear systems and/or 

nonstationary data. Its core relies on the so-called Empirical Mode Decomposition (EMD), which permits to 

decompose the acquired signal into a set of basis functions, called Implicit Mode Functions (IMFs). They 

describe the vibratory response of the system and are a complete, adaptive and nearly orthogonal 

representation of the analyzed signal. Each IMF is almost mono-component [1], thus the implicit mode 

function family can determine all the instantaneous frequencies of the nonstationary signal, even from 

nonlinear structures [1]. The IMFs are processed through the Hilbert transform, to obtain the Hilbert 

spectrum of the signal, which enlightens unique features of the analyzed data.  

In [2], the damaged structure is modeled as a two-span beam, each span obeying the Euler-Bernoulli 

beam theory, and the crack is modeled as an equivalent torsional spring (figure 1). 
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Figure 1: Modeling of the beam and the crack 

 

 Using the analytical transfer matrix method, analytical mode shape functions are calculated. The forced 

response is then obtained by modal analysis or by numerical integration of the time-variant equations of 

motion and the single-point responses are processed by the Hilbert-Huang transform, from which the 

instantaneous frequencies are extracted. The damage location is revealed by the inspection of the first 

instantaneous frequency (IF) curve, which presents a sharp crest in correspondence of the damaged section. 

In case of time-varying systems, an optimization algorithm, based on the comparison between the first IF and 

the analytical approximation of the first natural frequency, allows the estimation of the mass and the speed of 

the moving load. The effect of the moving load is then filtered out from the IF and the damage location is 

identified. The capabilities of the proposed technique are studied varying the load, the damage characteristics 

and the effect of the ambient noise.  

 

       2.2   Numerical validation and discussion  
 

To evaluate the performance of the proposed technique, on the detection of damage in bridge structures, 

some numerical examples are presented. The aim is to evaluate the sensitivity of the method to: 

 

 the crack depth d; 

 the crack location L1;  

 the velocity of the moving load V; 

 the ambient noise. 

All the following examples consider a simply supported beam, whose physical-geometric parameters are: 

modulus of elasticity E = 2.00·10
11 

N/m
2
, material density= 7800 Kg/m

3
, beam length L=20 m, cross 

section height and width h=b=0.2 m; the modulus of the load is 1000 NP  (downwards oriented). The 

crack position and depth are chosen as follow: L1 = 0.4L and d = 0.4h, respectively, and the speed of the 

moving load is V=2.8 m/s (10 km/h).  

The first plot in figure 2 shows the nondimensional forced response corrupted with 10% noise level. The 

second plot in figure 2 shows the FFT of the signal. The Fourier transform captures the frequency shift of the 
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fundamental frequency due to the damage (1.6% smaller than the undamaged case), but cannot locate it. 

Figure 3 shows the first IF curve, evaluated for 0%, 5% and 10% noise levels. Even if the noise introduces a 

modulation in the instantaneous frequency plots, the damage position is still correctly identified from the 

location of the highest crest, which confirms the reliability of the proposed method even with moderately 

polluted measurements. 

 
Figure 2: a) Forced response of the beam and b) its relative Fourier transform 

 

 
Figure 3: First IF curve with different levels of noise vs. length of the beam 

 

The influence of the damage location in producing frequency modulation is considered: figure 4 shows 

the first IF obtained for three damage positions: 0.2L, 0.4L and 0.8L. It appears how the crest in the IF curve 

becomes higher and sharper as the damaged sections is closer to the end of the bridge.  
 

 
       Figure 4: First IF curve for three damage positions on the beam 

 

       3.3.3   Time dependent systems 
 

The determination of the load characteristics, namely the mass and velocity, is performed by an 

innovative optimization method, based on the use of EMD and HT, as explained ahead. To understand the 

basic principle of the proposed technique, it is worth to recall how the natural frequency  1 t
 
of an Euler-

Bernoulli beam model changes with time, as a consequence of the moving mass. It is well established indeed 

that  1 t  can be approximated by the analytical formula: 
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Equation (1) enlightens the functional relation between the fundamental frequency and the load 

characteristics. Both the mass and the speed of the moving load are estimated following a minimization error 

approach based on equation (1), once the left hand side is extracted from the measured dynamic response. 

The backbone of the method is articulated as follows: 

a) data acquisition: the response  w t is measured by a single-point sensor placed at midspan; 

b) data decomposition:  w t  is decomposed into a family of IMFs through the EMD method; 

c) data transformation: the instantaneous frequencies are evaluated with the application of HT to each 

IMF, the IF corresponding to  1 t , here  identified  1 t , is selected; 

d) data minimization: an error vector  1,..., nte e   is introduced, whose components are: 

     1 1, , 1,..j j je M V t t j nt    ,  

where nt is the number of time samples. The load parameters, i.e. ,M V , are estimated from the 

solution of the nonlinear least square minimization of the error function:     

  2

2,
min ,
M V

M V ,                             where  is for the norm of the vector. 

Concerning point d), classical, derivative-based, optimization algorithms depend rather strongly on the    

initial guess, thus these techniques might only give a local solution. To skip this difficulty, a genetic 

algorithm (GA) is employed to solve the problem. We take advantage of the GA’s benefits: they can quickly 

examine a large amount of data, and the choice of initial conditions does not affect negatively the outcome 

because they are discarded.  
To evaluate the performance of the proposed technique for the estimation the load characteristics, a 

simple supported beam bridge, with the same characteristics of a Pescara bridge tested in [9], was 

considered, setting the load characteristic equal to M = 10 kg and V = 1 m/s [14]. Figure 5 shows the 

dynamic response of the system at midspan. The forced response can be considered as the sum of two 

harmonic waves controlled by the  fundamental frequency    and the loading frequency 

      √
  

  

 

√  , 

In this example they are 18.8 Hz and 0.17 Hz, respectively.                                                                                     

 
Figure 5: Dynamic response of the system at midspan 

 

Figure 6 shows the Fourier transform of the dynamic response. Most of its energy is stored around the 

loading frequency. The spreading of energy around 18.8 Hz shows the frequency modulation induced by the 

load over the fundamental frequency. However the FFT is not suited to resolve the details of the 

phenomenon.  

Figure 7 presents the estimated load characteristics, based on the previous data, after the use of the 
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genetic algorithm formerly introduced. The estimated values are 10.6 kg and 1.05 m/s, with estimation errors 

of 6% and 5%, respectively.  

 

 
Figure 6: Fourier transform of the dynamic response 

 

       

Figure 7: Estimated values of mass and speed 

Figure 8 shows the fundamental frequency f1NHT evaluated with the NHT (Normalized Hilbert Transform) 

applied to the first IMF, compared to the analytical frequency f1an=ω1(t) /2π, given by equation (1). Note that 

there is good agreement between f1NHT and f1an curves: f1an can be considered as the regression of f1NHT curve.  

 
Figure 8: Comparison between f1NHT of the first implicit mode function and f1an (eq. (1)). 

 

The damage location is estimated as follows [14]: 

a) the f1NHT curve is smoothed using a moving average filter; the curve f1S is generated and the 

frequency modulations induced by both the moving mass and the damage are kept; 

b) the estimated load characteristics are inserted into equation (1) and the fundamental frequency  1f t  

is determined; 

c)        1 1 1Sf t f t f t f t    is calculated; in this way the effect of the moving mass is filtered 

out and  f t  retains only the frequency modulations induced by the damage; 

10
0

10
1

10
2

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Frequency f (Hz)

B
e
a
m

 d
is

p
la

c
e
m

e
n
t 

m
o
d
u
lu

s
 |
W

(f
)|

 (
m

)

Loading Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Vt/L

H
z

 

 

Numerical

Analytical



7 

 

d) the damage location is estimated by the time td at which
 

 f t  reaches its maximum, by the formula
 

1 dL Vt , as shown in the second subplot of figure 9. In the figure, f1NHT,  1f t  and  f t  are 

represented and the estimated location is 
1 0.2045L L , with an estimation error about 2%.  

 

  
Figure 9: Estimate of the damage location 

 

 3    Train-Railway Monitoring 
 

The train-railway monitoring is an important activity allowing for a variety of combination of algorithms 

and modelling. The Sapienza Team had the opportunity to collect a large amount of data, available for 

different processings, deterministic and stochastic as well, and introducing different models of the system 

under investigation. Moreover, as an additional interesting element, the monitoring goal includes two 

different subsystems: the railway and the train wheels, treating the data as a whole, indeed separating, by a 

suitable data processing, the diagnostic information for the railway and the train. 

The data are obtained by a set of FBG sensors distributed along an experimentally equipped underground 

rail installed and active for more than two years.  

More precisely, in this case, the desired goals can be summarized as follows: 

 identification of railways system characteristics 

            - detection of the rail roughness and wear  

            - detection of railway local defects (work in progress)         

 identification of the train wheels system 

           - detection of wheel roughness and wear 

           - detection of train load distribution 

           - detection of train speed. 

Not all these goals have been accomplished, and particularly the detection of the local damages on the 

rail is still investigated. In fact, following closely the lines presented in section 2, with some differences 

related to the infinite length of the rail with respect to the finite length of the bridge, it is possible to extend 

the Hilbert-Huang procedure to detect the railway local defects. 

            

       3.1   Sensor description and layout 
 

The experimental set-up was installed between two stations in the subway of Milan. It is made of a set of 

FBG sensors to detect the strain deformation, static and dynamic, of the rail and the environmental 

temperature. A schematic description of the measurement chain is shown in figure 10, and consists in: 

 

- a light beam signal, in the range of far infrared wavelenghts, generated by an optical led source; the 

light beam travels along an optical fiber equipped with  FBG sensors attached to the rail;  

- when the rail is deformed, the frequency bandwidth of the reflected light changes, and such variation 

is detected by a spectrum analyzer; 
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-    the spectrum  analyzer samples the analogical signal before sending it to the computer where the 

signal is suitably processed. 

 

 
Figure 10: Sketch of the measurement chain 

 

About 30 FBG sensors of strain and temperature are installed along the railway as illustrated in figure 11. 

The relative distance between a pair of sensors is within the range 10-20 m. 

 

 
Figure 11: Experimental set-up 

 

Figure 12 shows a detail of the optical sensor installed of the rail. 

 

 
 

Figure 12: Installed FBG sensor 
 

       3.2   Detection of roughness and wear of rail and wheels. 
 

In this case, the monitored system Sm is limited to the acquired strain information acquired along the rail 

ε(xj,t). Indeed the interest here involves a rather large amount of unmonitored data Su, specifically related to 

the roughness of the railway and the train wheels. To approach the problem, the definition of a response 

model of the system is crucial. In fact, the structural strain response ε(xj,t) of the railway is produced by the 

simultaneous presence of three excitation components: the moving load of the train along the rail, the wheels 

irregularity circular profile and the rail irregularity geometry. The mechanical model is determinant to 

understand the individual participation of these components to the measured response. Moreover, with the 
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help of some restrictive but physically relevant hypotheses, it is possible to separate these components and 

their relative range of frequency, monitoring their respective levels that can be compared with some 

benchmark for the diagnostic process. 

 

      3.2.1 Modelling 
 

The information used for the identification process comes from the dynamic equation of the rail. This 

allows to describe the rail excitation phenomena and obtain the main spectral characteristics of the acquired 

signal. 

The rail can be modeled as a prototype structure consisting of an infinite beam on an elastic foundation 

excited by a set of lumped travelling masses, each carrying a portion of the train mass, considered integral to 

the wheels. The excitation is due to (i) the travelling load of the train, (ii) the vertical inertial loads due to the 

wheel-train mass, excited by the rail-wheels geometrical irregularities. With obvious meaning of symbols 

and considering now a single wheel, the system is described by: 
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where χ is the stiffness of the elastic foundation and the last term on the right hand side accounts for the 

vertical acceleration of the train mass m due to the combined random irregularities at a single wheel-rail 

contact, i.e. a single wheel of the wagon.  Therefore: 
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td

d
thtr

td

d
ta


 )()()()(

2

2

2

2
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where r(θ) and h(x) are two random signals. More precisely, the first is related to the wheel geometrical 

imperfections that make r(θ) random-periodic. The randomness is caused by the set of train wheels (of a 

wagon) that excites the rail, and each of the wheel signals can be considered as a sample of the same random 

process. The period is controlled by the wheel angular speed Ω and wheel radius R. The signal h(x), related 

to the rail roughness, is simply random.  

The form of the motion equation suggests two different types of rail responses: the first one is related to 

the load  Vtxmg   for which the response can be found in the form    mgmg Vtx  . Therefore, 

substituting into the equation of motion one obtains: 

 

           mgmAVEI mgmg

iv

mg  ''2
 

 

This equation can be analytically solved considering two solutions: one for positive ξ, the second for 

negative ξ, and imposing, for the two solutions, congruence conditions at ξ=0. For the purpose of this 

analysis, we are only interested here to the frequency content of the signals acquired by the sensors. 

This analysis can be carried out only by using the dispersion relationship associated to the propagation 

problem. To this aim, the point ξ=0 is skipped, and the dispersion relationship is found looking for a solution 

of the form e
kξ

, leading to the dispersion relationship: 

 

0224   kVAkEI  

 

Using general parameters found in the literature for underground railways (MKS units: EI=3.7·10
6
, 

ρA=50, χ=5·10
7
 ), this equation can be solved in terms of k for different values of the train speed V. This 

implies that the solution is controlled by the factor  e
jkVt

 characterized by a circular frequency ω=2πf=kV. 

The result for three different train speeds is: f=2.1Hz for V=10m/s, f=4.3 Hz for V=20 m/s, f=10.9 Hz for 

V=50m/s.  

The second part of the excitation is more complex. In fact, simple travelling solutions are not admitted, 
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because the wheel excitation is of the form    Vtxtmaw  , that contains the time-dependent function 

 taw . However, as a general consideration, the term  taw can be reduced to a suitable superposition of 

time-harmonic functions:   

                                                                       tj

n

N

n

neC



1

 

and therefore : 
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This expression allows to look for solutions of the form  

 

 

 

It reveals that the rail response to the random loads comes from the product of two different factors. The 

frequency content response of the first term  Vtx
wma   can be evaluated using the dispersion 

relationship, while the second one can be derived directly inspecting the harmonic components n .  

By substituting   tj

n
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n
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n

w
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1

 into the equation of motion, after some mathematics, we have : 
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Again, the point ξ=0 is skipped, and the dispersion relationship is found looking for solution of the form 

e
jkξ

, leading to the dispersion relationship: 

 

02 2224  nn AVkAVAkEIk   

 

This equation must be solved in terms of k, varying both the train speed and the harmonic content of the 

signal (wheel and rail) here represented by n . Note that the rail and wheel signal components must be 

treated differently (see [15]), in that the wheel signal is periodic, so that a direct Fourier series representation 

with random coefficients can be used, while for the rail a continuous spectral representation must be used.  

On the basis of developments presented in [15], the three frequency bandwidths related to the loads 

 Vtxmg  ,  Vtxtrm )( ,  Vtxthm )(  can be determined. They are presented in table 1 for the 

three values of the speed V considered above.  

 

LOAD BANDWIDTH V=10m/s V=20m/s V=50m/s 

 Vtxmg   

Train load 

 Vk mg )(,0  

k from equation (1) 

0-2.1 Hz 0-4.4 Hz 0-10.9 Hz 

 Vtxtrm )(  

Random-
wheel 

 VkVk wheelwheelwheel )(

max

)(

max

)(

min ,   

k from equation (2) 

2.1-503 
Hz 

3.9-1015 
Hz 

17-2561 
Hz 

 Vtxthm )(  

Random-rail 

 VkVk railrailrail )(

max

)(

max

)(

min ,   

k from equation (2) 

2.2-52 Hz 4.4-104 
Hz 

11-267 Hz 

 

Table 1 : Spectra of the different load components 

 

Such results show the following characteristics of the spectra: 
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(i) the train load spectrum develops in a low frequency range with respect to the others. However, a 

certain overlap is observed with the lowest frequency components of both the random-periodic 

wheel and random rail loads; 

(ii) the two random loads overlap even if a much wider frequency spectrum characterizes the 

random-periodic wheel load; 

(iii) the faster is the train, the lower is the overlap between train load and random loads. 

A first consideration is that a simple frequency filtering of the data cannot separate the three 

contributions. This means that additional data processing must be used, manipulating suitably the data both 

in the time and frequency domains, and using statistical properties of the random data. More precisely, the 

separation of the train load from the random load is operated by the following operations: (i) high-pass filter 

in the frequency domain, (ii) chopping the data in the time domain. 

Once the random load contribution is separated, the splitting of the wheel and rail components is made 

by following the procedure ahead: 

(i) a covariance matris is constructed, organized by row and columns, associated respectively to 

wheels and measurement stations; 

(ii) assuming stochastic independency of cross signals along this matrix, and between random-rail 

and random-wheel processes, it is possible to extract, from this matrix, two coupled equations 

where the unknowns are the power indexes related to the rail and wheels conditions, 

respectively. The solution of these equations provides an indication on the wear of the different 

wheels of a wagon (train) and of the different tracks of the rail, in correspondence to the 

measurement stations (see [15]).     

   The typical strain time history acquired by a FBG sensor when a six-car passenger train crosses a 

measurement station is shown in figure 13. The 24 axles are clearly indicated by the peaks in the signal, the 

highest strain peak is roughly 45 µε: given the axle spacing the evaluation of the train speed is 

straightforward. The deformation of the rail depends on the train speed and weight as well as on the 

maintenance conditions of rail and wheels.  

 

 
 

Figure 13: Strain time history when a six car passenger crosses a measurement station 

 

In order to obtain an index concerning the condition of the wheels and the rail, the signal is normalized 

with respect to the mean values of the peaks, depending on the train load, and with respect to the train speed. 

The first subplot in figure 14 shows the normalized high-pass filter of the strain signal: the sharp peaks point 

out that the influence of the axles load is not completely removed by the filter. The second subplot in figure 

14 shows the portions of the high-frequency signal obtained by chopping the data from a single boogie 

(within two consecutive peaks) form the signal: these zones are mildly affected by the train load. 

      Using the filtered and chopped signal (second subplot in figure 14), the power of the signal is computed:  

     22

1

222 1 )()(,, wheel

ci

rail

ci

n

j

ji

FC

ci

FC

c EEtx
n

tx  


  
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of the signal for the c-th car. Note that  txi

FC

c ,  represent the strain response as a superposition of two 

independent effects: the first 
)( rail

ciE  is the response of perfectly circular wheels rolling on a rough rail, the 

second 
)( wheel

ciE is the response of a flat rail when irregular wheels roll on it. For this reason we assume that 
    22 rail

i

rail

ic EE   is independent of the car index c. Similarly we assume that 
    22 wheel

c

wheel

ic EE 

independent of the station index i. 

 

 

 
Figure 14: Filter and chopping operation on the strain signal 
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      Figure 15 shows the rail index iR for 110 different train passages.  

 

Figure 15: Ri index vs FBG stations. The bar colours identify different train passages. 
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 the rail around the 19
th
 FBG station is in the worst condition in that it has the highest index, far 

greater than the others; 

 the rail segments around the 5
th
, 9

th
 and 13

th
 FBG stations are in the best conditions; 

 the regions of the rail around the 16
th
, 1

st
, 2

nd
 and 3

rd
 are also in pretty bad conditions; 

 the variability shown by the different bars along the same FBG station is mainly due to the 

interaction of different wheels with the same part of the rail, which is not a completely independent 

random process. 

Similar considerations can be made for figure 16 showing the wheel index cW : 

 bars of the same colour provide information regarding the status of the wheels of the cars for the 

same train; 

 the average damage is higher for the wheels of the 2
nd

 and the 5
th
 cars, roughly double than the 

others. This can be correlated with the average car load, which shows the 2
nd

 and the 5
th
 cars have the 

smallest load. This rather counter-intuitive result may arise from two effects: 

o vibrations induced by the wheel - rail contact are probably higher in light cars, that have a 

higher resonant frequency of the suspensions, somehow tuned with the typical wavelength of 

the wheel irregularities; 

o due to higher vibrations and lighter car load, the wheels may frequently lose the contact with 

the rail track, giving rise to shocks along the contact patch.  

 

Figure 16: Wc index vs wagon wheels. Bar colours show different train passages 

4  Rolling tire stress and grip monitoring 
 

This project is focused on the development of a new system for the real-time identification of the tire 

stress during rolling and residual grip estimation.  

In this context three different goals and relative lines of research are in progress.  

-  Identification of the tire-road contact conditions (grip).  

-  Development of an appropriate sensor technology. 

-  Use of the grip information to control the electronic assisted drive devices. 

The first line of research is thus based on the use of combined strain/vibration information inside the tire, 

from which relevant kinematic characteristics of the tire-road contact can be extracted, namely by a factor 

named area slip ratio. This process forms the basis of a new technology for grip identification, that also 

leaded to develop a new model of tire dynamics. The model permits to determine closed form analytical 

relationships between the measured strain/vibration data and the area slip ratio.  



14 

 

This approach is different from others developed in similar industrial research projects. In fact, the most 

advances technologies for grip identification are based on the use of MEMS that measure the acceleration at 

some points of the tire inner structure. The different choice of measurement strategies, acceleration versus 

strain, has a series of deep implications in terms of sensors, models and algorithms employed, and at the end 

outlines two completely different technologies of grip identification. 

In this paper we summarize the model and the methodology described in [16] and some insights into the 

new approach of grip identification are outlined.  

A first point that must be underlined is that a large number of  mathematical models for tires exist in the 

technical literature (e.g. [17-21]). However, most of them are finalized to be used in the context of vehicles 

dynamic modeling, where the main goal is to determine the forces at the tire-road contact when the 

kinematic parameters of the vehicle and the tire are known. More precisely, in that context, one is interested 

in determining the longitudinal and lateral forces the tire generates when subjected to specified rolling 

conditions, characterized by longitudinal slip and slip angle, indeed kinematic parameters. However, the 

problem of the grip identification has a completely different goal. For this reason, the traditional models used 

for tires do not help much in the investigation of the tire grip, where the problem is to correlate some 

quantity measured inside the tire, strain or acceleration, to the phenomenon of adhesion between the rubber 

and the road.  

A second important point is related to the need of defining preliminarily the goal of the grip 

identification. In fact, a unique definition of grip does not exist, and it is indeed important to define what is 

the goal of the identification process we desire. The tire grip is a complex phenomenon that occurs at the 

tire-road contact that is difficult to characterize and is controlled by a large number of parameters. 

Frequently, an elemental description of the adhesion phenomenon is made by the definition of the static and 

dynamic friction coefficients, that could be themselves the goal of the identification algorithm. This 

approach is skipped in [16], considering that these parameters are ultimately related to an attempt of force 

identification that is well known to be intrinsically ill conditioned. Therefore, one can reasonably expect that 

a force-based identification process has not robustness characteristics. In [16], the preferred strategy consists 

in identifying the kinematic conditions at the tire-road interface, without any direct involvement of force 

considerations. To illustrate this point, a brief description of the tire-road contact phenomenology is useful.  

The wheel, as illustrated in figure 17, can be modeled as composed by two parts: one is a rigid body B 

(the rim), subjected to torque driving and braking actions; the other is the tire E, that wraps the first one,  

elastically deformable, both in the normal as well as in the tangential directions, η and ξ respectively. In [16],  

E is modeled through the coupling of a brush model attached to a rod-beam structure (brush-rod-beam BRB 

model). The contact patch develops along the ξ axis for a total length 2c. The peripheral part of the wheel is 

made of points the speed of which consists of four components: two are related to the rigid body motion of 

B, namely those related to its rotation and translation velocity, and two to the elastic motion of E, that 

involves normal and tangential speeds due to the elastic deformation of E. As a consequence of this complex 

speed composition, the peripheral points of the wheel along the contact patch are divided into two sets: 

points with zero relative speed with respect to the road, and points having non-zero relative speed. In figure 

17, the first belong to the yellow segment of the contact patch, the second belong to the blue one. The model 

presented in [16] is addressed to identify the point ξ* along the contact patch, that marks the transition 

between the slip and non-slip region (blue and yellow, respectively), that clearly specifies the goal of the grip 

identification process. The ratio ξ*/2c is called area slip ratio, and provides a good indicator of the kinematic 

grip condition along the contact patch. 

Note that this parameter provides a significant and relevant knowledge about the grip condition of the 

tire. In fact, when the slip-region expands along the contact patch over certain geometrical limits, or at a fast 

speed, these are indicators that the tire is going toward a dangerous grip condition. The conditions in which 

ξ* collapses in the two extreme and opposite points of the contact segment, the trailing edge and the leading 

edge, characterized by ξ*/2c=-0.5 and ξ*/2c=0.5 , respectively, are associated to the extreme conditions of a 

complete macroscopic slip of the wheel, and of complete grip, respectively.        
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Figure 17: Scheme of the BRB model of the tire 

 

On this basis, a suitable algorithm can extract the contact kinematic parameters from the time history of 

the internal strain of the rolling tire. Therefore, the goal of the identification process can be simply 

summarized and formalized as follows: 
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where ε is the strain measured by the sensor introduced inside the tire, that scans the contact patch during the 

time interval Rc /2 . The model developed in [16], provides the structure of the functional relationship F 

between ξ* and ε.  More precisely, the authors show how the presence of a discontinuity in the kinematic 

contact conditions affects the signal ε(t). In other words, the algorithm is aimed at identifying ξ* in terms of a 

weak discontinuity characteristic of the strain measurement, produced by the transition of the slip conditions 

at the tire-road interface. In this case the monitored system Sm is known through the measured ε(t), while the 

unmeasured part Su is simply identified by ξ*(t). 

     An example of experimental strain measurement  is shown in figure 18, acquired during an acceleration 

 
Figure 18: Experimental strain measurement, acquired during the acceleration of the vehicle 

    

transient of the vehicle front wheel. It appears that the sequence of peaks is related to the rotation process 

(one peak per round), and the frequency of the peaks increases as the speed increases, while the maximum 

amplitude of the signal decreases because of the load transfer to the rear wheels produced by the 

acceleration. 

As shown in figure 19 the algorithm takes information, for each round of the wheel, only from the 

portions of the signal corresponding to the scanning of the contact patch (red bullet in figure 19). This 

portion provides the distribution of the strain along the contact patch, as shown in figure 19. This zoom 
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operation shows also that a series of ripples characterizes the ε(t) signal, along the contact patch due to the 

tire vibrations and to the intrinsic measurement noise. However, the use of some algorithms as the one 

described in [16], permits to determine the most probable collocation of the discontinuity of ε(t) along the 

contact patch, identifying ξ* as it is shown in figure 19.     

 

 
Figure 19: Scheme of the slip-grip  identification algorithm 

 

Both numerical simulations and a first set of experiments show that this technique is an appealing and 

powerful tool for grip identification. 

The main points (goals) of this part of research can be summarized below: 

i) identify the grip characteristics involving only strain-based information; 

ii) the tire-road grip is determined on the basis of kinematic considerations only, namely determining the 

fraction of contact area where a slip condition holds. This geometric-kinematic parameter, named area slip 

ratio, skips potential problems related to the grip analysis based on force identification, that is indeed well 

known to be ill-conditioned inverse problem;  

iii) considerations (i) and (ii) show that the method uses a direct correlation between slip kinematic 

conditions, involving only the tire velocity field on the contact area and the strain. The strain data contains 

space derivatives, avoiding the problem of calculating them by finite difference procedures operated by 

single-point-sensors, as for the accelerometers, making the data process much more robust and permitting a 

useful integration of acceleration (vibration) data;  

iv) the developed theoretical model is aimed at correlating in the simplest manner the strain information and 

the contact kinematics. The model is able to determine analytically this correlation. The model permits to 

compare the theoretical model with the measured strain time-history extracting the desired parameters, 

effectively filtering the data noise effects. 

A second line of tire research is the result of a new patent (A. Carcaterra, N. Roveri, M. Platini), that is 

not possible to comment here explicitly being it still the subjected of the patenting process. The strain 

sensors inside the tire and related data for the real-time identification of the residual grip on each tire of the 

vehicle are processed on board. The experimental setup and preliminary tests are in progress on the prototype 

vehicle HU245, figures 20 and 21. The system is equipped with a set of more than 20 strain sensors inside 

the tire that transmit the signals out of the tire by special joints. The identification grip algorithm 

previously described is applied to the acquired data. 

The third line is devoted to the use of the grip information extracted from the apparatus previously 

described. In particular the unit uses the grip distribution among the wheels to distribute properly the braking 

torque in a fashion that maximizes the overall vehicle braking space.  
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Figure 20: The grip monitoring system mounted on the wheel of the test car HU245 

 

 
 

Figure 21: The grip monitoring system mounted on the test car HU245 

 

5   A new measurement device for air speed estimation 
 

The measurement of fluid speed is a problem of practical importance. In the technical literature and at the 

actual state of the art, many methodologies exist to perform such a measurement. The Pitot tube represents 

the most widespread and well known instrument for fluid speed. The hot wire anemometry-HWA is also a 

well-known technique, based on the capability of the fluid flow to remove heat produced by an electric 

current on a conductive wire, regulating in this way its temperature and electrical resistance that can be 

measured. More recently, the particle image velocimetry PIV, has gained a great importance both in 

scientific investigations as well as in engineering applications, and can rely on the most recent advances in 

the fields of optics, high speed video cameras, informatics and signal processing, allowing to follow the 

velocity field in a monitored section of a fluid flow. Moreover, in more recent times, it is also available a 

three-dimensional version of the PIV, named 3C-PIV (three components PIV) that is indeed capable of 

monitoring three-dimensional velocity fields characterized by large out-of-plane velocity components.  

In this paper, a new system is presented that the authors name cold wire anemometry-CWA that is based 

on the use of an optical fiber equipped by FBG sensors directly exposed to a fluid flow. In the following a 

brief summary of its working principle and some preliminary results are illustrated. 

An optical wire mechanically consists of an elastic cable that, when subjected to transverse loads 

(orthogonal to the wire axis), reacts by modifying its shape following the elastic catenary configuration and, 

as a consequence, an axial stress is generated along the wire. Therefore, an optical wire exposed to the action 

of a fluid flow, the velocity of which is orthogonal to the wire axis, produces an axial stress along the optical 

wire. If this is equipped by FBG sensors, they reveal the amount of stress generated. If a suitable model of 

the wire mechanical response is available, one can determine the aerodynamic transverse load. Finally, based 

on an aerodynamic drag model, a correlation between aerodynamic loads and the fluid speed can be 

determined and, as a final result, one can correlate the measured axial stress of the wire to the fluid speed. 

In this identification process the sensor is the optical wire with its mechanical characteristics (length, 

section, Young modulus) and the embedded FBG sensors. The algorithm of speed identification is based on 

two coupled models: one describing the cable mechanical response of the wire, the second the aerodynamic 

load. However, the relationship between the measured strain and fluid speed is rather complicated. 

Let us consider an optical wire (Young modulus E, cross section area A0 ) of length l at rest that, under a 
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given pre-stress load, becomes of length L, the distance between the end points of the wire during the 

measurement. At one of the fixed end points, one has the axial and the normal reactions with respect to the 

wire axis (of abscissa s), H and R, respectively. The fluid flow is assumed to have only a normal velocity 

component V(s) with respect to the wire axis. The fluid loads the wire through a force Q, that depends on the 

local Reynolds number Re , and on V
2
 through the drag coefficient CD.  With these assumptions, the 

mathematical model of the problem relies on the set of equations: 
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This represents a nonlinear integral-algebraic equations system. The two quantities that would be 

correlated are V(s) and T(s)=EA0 ε(s), where the strain ε would be known, at least at some points, through the 

FBG measurement. Therefore, the written system of equations, could produce V once T is known (or 

viceversa), where the set of unknown are V, Q, R, H, and four equations are available.   

The method to identify the fluid speed is based on two different approaches. The first is to use the 

illustrated mathematical coupled model to generate numerically the speed-strain correlation curves; the 

second is to use calibration experiments, that directly measure the strain through the FBG sensors, and 

through an independent measurement system, e.g. a Pitot tube, determine the related speed.   

Figure 22 shows the correlation determined by the simulations through the previous set of equations. 

   

                                         
 

        Figure 22: Strain vs air speed, for different values of wire pre-stress 

The fluid velocity profile along the wire is assumed to be constant. The equations are solved for different 

values of V and T(s) is determined numerically. However, its value does not change sensibly along the wire 

span, and even a single FBG would be sufficient in this case to identify the strain along the whole cable. On 

the vertical axis of figure 22 the sensor measurement is represented for different values used for the air speed 

(represented on the horizontal axis). Moreover, different curves are obtained by varying the pre-stress of the 

wire, that is the ratio L/l. It appears that the anemometer sensitivity is higher for lower values of the wire pre-

stress.  

Figure 23 shows the comparison between experimental data and simulated data in the wind tunnel, where 

it appears the model used for the identification of the air-speed and experiments are in good agreement.  
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Figure 23: Comparison between experimental (Pitot) and simulated data 

This preliminary analysis of the air speed measurement system outlines a potential opto-mechanical 

technology for the identification of fluid flow characteristics. It appears clearly, from the written equations, 

how the air speed measurement belongs, in this view, to an identification process that passes through the 

modeling of a coupled opto-aeroelastic problem, where Sm is known through the measured ε(t), while the 

unmeasured part Su is V(t). Figure 24 shows the experimental set-up and the test in the wind gallery. 

  

 
 

 

Figure 24: Experimental set-up in the wind gallery 
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6  Concluding remarks 
       

This paper presents a review of researches developed at the University La Sapienza, Roma, aimed at 

showing new technologies related to the application of FBG sensors and to health monitoring of civil and 

mechanical systems. Particularly the focus is here addressed to (i) the detection of local defects of bridges, 

(ii) identification of railways and train wheel characteristics, (iii) monitoring of tire stresses and grip 

conditions, (iv) development of a new measurement device for air speed estimation, but other significant 

applications are taking advantage of these works, as those in progress related to the shape monitoring of 

sailing boat musts and airplane wings for performance optimization, and the control of high speed boat 

drones and engines for diagnostic purposes. 

The paper is framed in the context of a monitoring technology, including an identification goal, the use 

of appropriate sensors, the development of a targeted model and an identification algorithm which represents 

the final processing to reach the expected goal. Most of the applications considered in this paper use FBG 

sensors, that seem particularly convenient at least in cases when the range of frequency is not too high.  

      The models developed for the detection of local defects on bridges and viaducts, for the characterization 

of rail and wheels characteristics, as well the one used for the monitoring of the tire grip are totally dedicated 

to the particular applications considered and are definitely promising for future developments. So far they 

were very useful to give important indication on the processing of experimental data to reach the goal 

expected. 

With reference to the applications presented in the paper, we wish to highlight the main results.      

a.    Local damage detection. The method, based on the EMD and HT, can work using a single 

measurement point and produce good identification results. It is quite robust and able to identify the 

load characteristics with good accuracy, generally larger than 90%. Once the load characteristics are 

estimated, the first natural frequency is analytically evaluated and subtracted to the empirical 

instantaneous frequency, computed via HT. A normalized distance function is generated, where the 

effect of the moving mass is filtered out. The location of the damage is estimated by the maximum of 

the distance function. The method is capable to identify moderately damaged sections, with crack 

depths larger than 25% of the section height. Results are not very sensitive to damage position and 

ambient noise. The speed of the moving load plays a fundamental role on the estimation process: as 

the velocity increases the EMD becomes unable to separate the frequency components of the signal, 

thus the proposed technique fails to identify the load characteristics and/or a potential damage.  

b.    Detection of rail and wheels roughness and wear. In order to accomplish with the goal, a set of FBG 

sensors are used along the railway. Since two different loads must be considered, together with the 

moving mass of the train, an appropriate model has been developed to check the respective 

frequency bandwidths of the separate loads and operate a suitable post-processing of the strain data, 

consisting in a high-pass filtering and chopping. In this way it is possible to define two different 

indexes related to the rail and wheels conditions that put in evidence the roughness conditions of 

each wheel and the portions of track, more damaged along the rail. 

c.    Tire-grip identification. The grip level can be identified using only a geometrical-kinematic  

parameter based on slip conditions along the contact region, skipping any interface-force related 

quantity and independently of the knowledge of any of the tire construction parameters. The data 

necessary to develop the procedure are only a set of strain measurements along the tire. A patented 

prototype system is now running on a real vehicle and the perspectives for predicting in advance the 

reach of a potential wheel blockage, before a complete slip of the wheel, are very realistic. 

d.    Measure device for air flow speed. The sensor developed uses an optical cable equipped with a set of 

FBG sensors and measures, under the air flow, the strain of a deformed optical wire. Though a set of 

physical equations, it is possible to relate the air speed to the stress of the wire. Experimental test are 

under development to highlight the efficiency of this sensor with respect a classical Pitot tube. 
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