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Abstract 
This paper presents a recursive  method of modal parameters identification based on operational 

measurements, dedicated for non-stationary systems. Decoupling signal components procedure allowed to 

reduce the signal model and simplified the process of modal parameters estimation. Adaptive method of 

filtering simplified the process of wavelet function selection. Presented method utilize Continuous Wavelet 

Transform (CWT) with Complex Morlet Wavelet function. Thanks to reduction of model order, estimation 

of modal parameters can be performed using relatively simple  mathematical formula. This approach 

significantly reduces demand for computing power which have a direct impact on system costs and modal 

parameter estimation time. The method has been tested on numerical models and applied for real data. 

 
1 Introduction 

The operational modal analysis (OMA) is widely used in civil, mechanical and aerospace engineering 

communities and applied to identify the modal parameters of such structures as buildings, towers, bridges, 

offshore platforms, airplanes, etc. [1]. However, the classical OMA’s techniques  have some limitations, 

among which the following are the most important [2]: the structure is assumed to be linear, the structure is 

time invariant, the structure is observable and in the system of interest damping is small or proportional. Due 

to this assumptions, results which can be achieved with modal technique are an approximation of the real 

structure behavior, but still, they are good enough to be applied in diagnostics, monitoring, control, etc.  

In practice, many engineering structures like aircrafts, traffic-excited bridges, robots, rotating machinery 

working with varying speed, cranes and many others should be treated as non-stationary systems. This means 

that at least one of the assumptions is not satisfied in this case.  The classical techniques of OMA do not 

allow for variation of the eigenvalue matrices [3], [4]. Therefore, the techniques cannot be directly applied to 

identification of  non-stationary systems’ modal parameters. Additionally, there are practical problems 

associated with the implementation of the OMA methods included: length of the data required for analysis, 

duration of the estimation procedure, necessity of an experienced operator’s intervention in order to select 

the correct results from a set of solutions or influence of estimation procedure sequence in case of data 

obtained during a series of partial experiments (runs or set-ups). 

 The most frequently used solution for application OMA to identification of non-stationary system is the  

―quasistationarity‖ assumption. It is assumed that the system is stationary within given time interval. 

Unfortunately, this solution requires a compromise between the ability of the algorithm to keep up with  

modal parameters changes and the quality of results (small number of samples). Another approach is the use 

of recursive methods of identification. In this case, the eigenvalue matrix can be estimated recursively for 

every sample. 

Despite the above mentioned limitations, the OMA techniques can be adapted to identification of non-

stationary systems. Various varieties of OMA are widely used in non-stationary condition and can be applied 

for  identification e.g. systems containing rotating parts (such as turbines, helicopters, engines, etc.) where 

the assumption of broadband of excitation is not fulfilled [5], structures with variable mass [6] and geometry 
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[7], systems with closely spaced modes  [8], large structures [9] and systems with varying boundary 

conditions [10,11]. 

This paper focus on application of adaptive approach to wavelet filtering process. The use of wavelet filter 

allows to: decoupling individual frequency components of the signal, reduction of the signal model and 

simplified the process of the modal parameters estimation. The adaptive approach simplified the process of 

wavelet function selection and enables changes/adaptation of wavelet frequency during identification 

process.  

The paper is organized in the following way. Section 2 describes the method for model parameters 

estimation. Section 3 presents the adaptive wavelet based signal filtration. In Section 4 the algorithm is 

presented. The next sections contains the results of verification of the method on simulated data. Identified 

parameters are compared with the results obtained by using a non-adaptive formula of presented 

algorithm.Erreur ! Signet non défini. 

 

2 Identification method 

The proposed algorithm consists of three main parts. In the first step the signal is decomposed by wavelet 

transform. In second step model parameters are estimated. In third step a modal determined. Organization of 

the algorithm shown in Figure 1. 

 

Figure 1 : Organization of the algorithm 

 

 

2.1 Adaptive wavelet filtering 

The wavelet analysis is a method of signal decomposition. As a result of the wavelet analysis, in 

contradiction to the Fourier transform, elementary signals – so called wavelets – are obtained. Wavelet 

functions are continuous, oscillated with various duration times and spectrums. From the mathematical point 

of view, a continuous wavelet transform (CWT) of a signal x(t) can be defined as 

 

 

 

 

 

where b is a translation (displacement) representing region, a is dilatation (expansion) or scale parameter, 

g(t) is the basic wavelet function. Wavelet filtering decomposes particular signal frequency components with 

resolution depending on the wavelet function parameters [12]. The selection of parameters of the wavelet 

function requires some compromise between the quality of filtration in frequency and time domain. After 

decoupling, every component of the signal can be analyzed separately. This significantly decreases 

computational effort because model order of decoupled component is low. Besides, tracking all natural 

frequencies and damping ratios of the system is not always demanded. An example of this can be flight 

flutter tests, where very often only a specified number of frequency and damping ratios (directly responsible 

for the flutter phenomenon) is tracked. It also reduces the demand for computational power  which increases 

applicability of the method and makes the real-time implementation process easier. Schematically, the 

process of frequency component decoupling for stationary signal is shown in Figure 2. 
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Figure 2. Wavelet based signal filtering. 

 

This property has been repeatedly used to identify modal parameters for both stationary and non-stationary 

systems. The major inconvenience of using the non-adaptive version of a wavelet filter for modal parameters 

identification process is the constant filtration bandwidth for assumed wavelet function. For large changes in 

system parameters and use of a narrow band filter, decomposition process can be performed for 

another(next) signal component or decomposition can be applied for frequency band where there are no 

frequency components. Then, the obtained  results can be only a filter response This problem is presented in 

Figure 3a. In turn, application of broadband wavelet filter causes decrease in time domain resolution, 

according to Heisenberg relation.  

 

 

Figure 3. Comparison of Non-Adaptive  (constant scale parameter) (a) and adaptive (variable scale 

parameter)(b) wavelet filtering conception. The f1 and f2 are tracked frequency, related to scale parameter a. 

 

The solution of the constant filter bandwidth problem can be making the bandwidth parameter conditional on 

the identification process. This requires determination of the wavelet parameters and different wavelet 

functions gi for different discrete time moments i: 
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Determination of the wavelet functions, which allows filtration of the given  frequency component, requires 

defining the scale parameter associated with the frequency by the formula [13]: 

 

 

 

 

 

where Ts is the sampling time and fi is the frequency corresponding to scale parameters ai. A change of the 

scale parameter ai allows change of the wavelet filter frequency. Schematically, this process is shown in 

Figure 3b. 

 

2.2 Recursive Least Square algorithm 

Method of estimation model coefficients based on RLS algorithm. Schematically the algorithm is presented 

in Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Organization of Recursive Least Square method. 

 

where )(iy  is current system response signal, )(ˆ i  is estimated a priori prediction error, based on previous 

iteration 

 

 

 

)(i  is regressor vector, )(i  is vector of model parameters,  iL  is gain vector  and  iP  is covariance 

matrix given as 

 

 

 

 

 

 

 

 

where  - forgetting factor. For , i = 0 , IP )0( ,where  - is a large natural number , for example 10
6
  , 

I  - unit matrix. 
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As a result of RLS algorithm the vector of model parameters is obtained 

 

 

 

 

where nA and nC are model order, 
CA nn ccaa ,...,,,..., 11   are model coefficients. 

 

 

3 The algorithm 

The adaptive identification algorithm consists of two main parts. The core of the algorithm is RLS algorithm 

– responsible for model parameters estimation. The input data are filtered using wavelet transform, which 

allows both reduce the model order and estimate the modal parameters based on analytical formulas. An 

integral part of the identification process is an adaptation of wavelet filter that allows to tune the filter 

characteristics to the current value of the frequency. 

 

3.1 The adaptation process 

The adaptation process is performed by comparing the current frequency of wavelet function (a parameter) 

and frequency estimated by the RLS algorithm. If the absolute value of the difference of the two frequencies 

is contained within the assumed range (δ), the identification process is continued without changes. If the 

difference is greater than assumed, the frequency of wavelet function (scale parameter) is changed to a value 

corresponding to the frequency estimated from the RLS algorithm. Schematically, the process of adaptation 

and the diagram of the method with adaptive wavelet filtering is presented in Figure 5, where fe,  fw and δ are 

respectively: current estimated frequency, frequency corresponding to scale parameter (wavelet frequency) 

and adaptation step. The adaptation step allows to reduce the instantaneous growth of covariance matrix 

values at the moment of change of the wavelet filter parameters [14,15]. The range of this parameter is 

determined as much smaller than the filter bandwidth (1-5% of bandwidth) to guarantee the correct signal 

components decoupling. 

 

 

Figure 5. Organization of proposed adaptive wavelet filtering procedure. 

 

 

3.2 Modal parameters estimation 

Wavelet decoupling allows to separation particular signal components. The result is that model order of the 

signal is known and equal two. For the second order signal model it is possible to assign analytical formulas 

that describe dependences between model and modal parameters [25] 
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where:  - natural frequency,  - damping ratio. When the analytical formula for modal parameters 

calculation is assigned, there is no required to find roots of the characteristic polynomial estimated from the 

RLS algorithm.  

 

4 Verification of the algorithm – numerical non-stationary model 

The two degree of freedom non-stationary system was modelled. The stiffness coefficient for mode 1 was 

changed during simulation according to equation 

 

 

 

 

 

 

 

 

An example of time history of the system response and the stiffness parameters are presented in Figure 6. 

 

Figure 6: a)System response for white noise excitation, b) stiffness changes for mode 1 

 

Using procedures described in the section 3, the identification process was performed. Both adaptive and 

non-adaptive algorithms had the same initial parameters applied (wavelet function and forgetting factor). 

Wavelet function parameters were selected randomly. Comparisons of the identification results using non-

adaptive and adaptive filtering are presented in Figure 7 where identified values of damping ratio and natural 

frequencies of the system are presented. 
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Figure 7. Comparison of identification results for mode 1: a) natural frequency, b) damping ratio 

 

As can be noticed, the method with adaptive wavelet filter gives better results for both natural frequency and 

damping ratio. There are two conclusions arising from the performed test: adaptive wavelet filtration enables 

tracking of modal parameters and the process of initial wavelet selection is not a critical part of the 

algorithm, unlike in the non-adaptive method (as described in previous work of the authors).  

 

5 Experimental verification of formulated procedures 

Two experiments on real objects were performed. First, the real time identification of the modal parameters 

of a system with variable stiffness has been conducted. Next, the algorithm has been used for identification 

of the modal parameters of ISKRA air jet during a flight. 

 

5.1 Identification of modal parameters of system with variable stiffness. 

The test bed was build out of the three main parts: frame, cart and two metal bellows. Between the cart and 

the frame there are two metal bellows mounted. The friction between the cart and the frame has been 

eliminated thanks to air bearings. Experimental setup of experiment is presents in Figure 8. 

Figure 8 : Experiment arrangement: a) scheme of the laboratory stand, b) equipment for experiment prepared 

to free vibration run test 1. frame, 2. cart on the air  bearings, 3. air bearing hoses, 4. metal bellows bracket 

mounted to the frame, 5. air bearings, 6. metal bellows bracket mounted to the sliding cart, 7. two metal 

bellows. 
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An electromagnetic shaker and a signal generator were used to excite the structure. The white noise signal 

was used as an excitation signal. During the experiment, the pressure in metal bellows was changed. As a 

result of system stiffness’ changes, the natural frequency of the system was shifted. The time history of 

system response, the result of the natural frequency identification and the adaptation process of the wavelet 

function are presented in Figure 9. Additionally, wavelet adaptation process was presented in Figure 9b 

(dashed line). 

 

 
Figure 9. System response (a), Comparison of identified natural frequency of the system (b). 

 

 

Also in this case, the results obtained with the use of adaptive methods are considerably better than the ones 

obtained by the non-adaptive wavelet filtering. The algorithm reacts much faster to the changes of the natural 

frequency of the system. Both algorithms were run with the same initial parameters. 

 

5.2 Modal parameters identification of Iskra air jet during a flight. 

TS-11 Iskra ―is a two-seater, mid-wing monoplane‖ jet. The study of the in-flight modal characteristics of 

the aircraft was based on ten accelerometers, arranged as shown in Figure 10a. During the flight test the 

aircraft was accelerated to a speed exceeding the maximum speed (during the dive). An example of a system 

response acquired by sensor 7 is presented in Figure 10b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. In-flight test: a) Measurement points for in-flight test, b) Example of response signal for sensor 7. 
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Analysis was perform for mode 27Hz which has the biggest influence on the generation of flutter 

phenomenon. The comparison of the results  estimated by real-time adaptive algorithm with the results 

estimated by off-line classical non-adaptive RLS algorithm with band-pass filtering  is presented in Figure 

11. 

Figure 11. Comparison of result: a) damping ratio, b) frequency 

 

The comparison of the results shows that both algorithms give similar results with exception of the initial 

phase of identification process (Figure 11b) where damping ratio value is relatively large. It is worth 

mentioning that the results of the classical RLS algorithm were obtained in off-line mode, with band-pass 

filtration. 

 

6 Conclusions 

Application of the adaptive wavelet filtration to recursive identification of modal parameters have been 

investigated. The performed test confirmed that the wavelet transform is a useful tool to support the 

identification process of a non-stationary systems. The adaptive wavelet filtration allows to separate the 

signal frequency components and enables reduction of model order of analyzed signal. This approach 

significantly reduce the computation time of modal parameters thanks to the use of analytical formulas for 

damping ratio and natural frequencies and facilitate the hardware implementation of the algorithm. The 

algorithm also allows to determine the confidence intervals of modal parameters, which gives the possibility 

to assess the quality of results. All performed tests showed that the adaptive wavelet filtration method 

combined with the RLS algorithm gives satisfactory results and works much better than non-adaptive version 

of the algorithm. This does not disqualify the non-adaptive formula of the algorithm. In the authors’ previous 

works this non-adaptive approach and its hardware implementation was successfully used for real-time 

identification of modal parameters of non-stationary systems [14; 15] and enable to track tens of natural 

frequency in real-time (assuming maximum sampling frequency of the signal equals 200Hz ). In this case the 

process of selecting the initial wavelet function and the forgetting factor had to be performed very precisely. 
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