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Abstract 
Noise radiated by rotating and reciprocating machines is often a mixture of multiple complex sources, the 

successful reduction of which is a field of intensive research. In this paper an advanced source separation 

approach is presented, based on cyclic Wiener filtering, which takes into account the cyclostationarity 

property of the signals.  

The aim of the Wiener filter is the separation of noisy measurements into their contributions from the N 

specific sources and the remaining “noise”. Traditionally this can be achieved by using reference signals 

which are strongly coherent with the sources of interest and uncorrelated with all the other interfering 

sources and the masking noise. 

The Wiener filter can be estimated using the raw signals or only their random part. Moreover, the filter can 

be underestimated if the Signal-to-Noise Ratio of the reference signals is low, thus leading to the paradox 

that the level of an extracted source contribution is higher than the overall level. In this study a general 

strategy is proposed in order to select over which part of the signals (raw or residual) should the filter be 

estimated. This strategy is based on the number of the available references and the expected number of 

sources and the link with the multivariable statistical regression. Moreover, in order to increase its 

robustness, it is proposed to estimate the cyclic Wiener filter using an additional constraint which imposes 

that the sum of the contributions of the periodic parts of each source equals the overall periodic part as is 

calculated by the synchronous averaging procedure. This produces a new estimator of the Wiener filter, 

obtained from a constrained least square optimization.  

The proposed method is applied on vibroacoustic signals captured on a test rig in order to quantify the 

contributions of “hydraulic noise” (originating mainly by four hydraulic pumps) and “mechanical noise” 

(originating from the various rotating parts of the engine). 

 
1 Introduction 

The interior and exterior noise levels consist a very competitive factor in the market of modern vehicles 

and machinery.  As a result there is increasing demand for developing quitter equipment.  Modern machinery 

is very complex and the noise emitted is finally the combination of several sources. Since the noise produced 

is of great concern, efforts are being made by the manufactures to develop tools that allow the accurate 

quantification, separation and prediction of the effects of the sources. 

The sources are usually both spectrally and temporally overlapping. Therefore two main approaches 

towards solving the problem have been presented, the separation methods based on a priori knowledge of the 

noise ([1], [2], [3]) (such as provided by a reference signal) and the separation methods based on the 

statistical independence of the noise sources (blind source separation methods).  These two approaches have 

been applied intensively to the domain of diesel engines. Antoni et al in [4] and El Badaoui et al in [5] took 

advance of the characteristics of cyclostationarity in order to perform noise source separation by means of 

the cyclic Wiener filter. The use of Wiener filter was also explored in [6]. MIMO system modelling was used 

in [7] in order to estimate the noise transfer function of an engine. On the other hand, in [8] blind source 

separation methods were used in order to recover signals of different physical sources. 

This paper is organized as follows. In section 2, the Wiener filter is briefly described. In section 3 a 

general strategy is proposed in order to select the part of the signals (raw or residual) which should be used 



2 

for the filter estimation. In section 4, a new constrained Wiener filter is proposed, while in section 5 an 

approach in order to combine the classic and the constrained filter is presented. The experimental results, 

obtained by the application of the new approach to a test rig, are demonstrated in section 6. The paper closes 

with the conclusion in section 7. 

 

2 Estimation of classical Wiener filter 

The Wiener filter was introduced by Wiener in 1950s in order to denoise a corrupted stationary signal. Its 

aim is to separate a noise measurement y(t) 

 

 ( ) ( ) ( )y t x t b t   

 

into its contribution x(t) from a specific source and the remaining “noise” b(t). Traditionally this can be 

achieved by using a reference signal r(t) which is strongly coherent with the source of interest and 

uncorrelated with all other interfering sources and masking noise embodied in b(t). The x(t) may be therefore 

estimated by the filtering operation: 

 

  (1) 

 

As illustrated in Fig. 1, the best linear filter h(τ) can be estimated by minimizing the least square error: 

 

  (2) 

 

Following the Parseval theorem the filter h(τ) corresponds to the transfer function H(f) which minimizes 

respectively: 

 

  (3) 

 

Finally the classical Wiener filter in the frequency domain is estimated by: 

 

  (4) 

 

where Syr, Srr are respectively the cross spectral and autospectral power densities  
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Figure 1: Principle of Wiener filtering 

 

3 Interpretation of Wiener filter and strategy proposition 

The Wiener filter can be interpreted in the light of the statistical regression, as it estimates the transfer 

function H(f) which minimizes the mean square error at each frequency (3). The general model of the linear 

regression is: 

 

 ( ) ( ) ( ) ( ) ( )Y f C f H f R f B f  (5) 

 

where C(f) is the y-intercept, H(f) the slope of the regression, R(f) the reference and B(f) the model of 

noise. The regression line should pass from the origin of the axes as a result C(f)=0. The model of noise 

respects two basic hypotheses:  
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a) The perturbations B(f) are independent and identically distributed and  

b) The perturbations B(f) follow the normal distribution. 

 

A third hypothesis should be added: 

 

c1) The perturbations B(f) have a mean value equal to zero (E{B(f)}=0). 

                                             Or 

c2) The perturbations B(f) present a periodic part. 

 

As mentioned in previous session, the classical and the constrained Wiener filter can be estimated using 

the raw signals or only the residual part of the signals. Based on the third hypothesis and taken into account 

that E{B
R
(f)}=0, a strategy can be proposed for the selection of the part of the signals on which the filter 

should be estimated. The strategy can be described by two scenarios: 

 
Figure 2: The Wiener filter presented as the slope of the line of regression estimated for each frequency 

using the raw signals 

 Scenario I:    RB f B f  

In this scenario the number of references is equal to the number of sources. The slope of the regression 

line corresponds to an estimation of the filter G ( ˆG H  ) (Figure 2). In the presence of intensive harmonic 

components, the cloud of points is localised around the point  ,P PR HR  leading to the correct and 

appropriate filter G. The filters should be estimated using the raw signals. 

 Scenario II: B(f)=B
R
(f)+ B

P
(f) 

In this scenario the number of references is smaller than the number of sources. The noise presents a 

periodic part which could come from an unknown source or from a source for which a reference is not 

available. In this case, using the raw signals in order to calculate the filter G would lead to an estimation of 

the filter H1 (which passes through the origin, Figure 3) and not to an estimation of the true filter H as is 

demonstrated at Figure 4. As a result the residual signals should be used for the estimation of the filter.  
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Figure 3: The estimated Wiener filter at the Scenario II     Figure 4: The estimated Wiener filter at the Scenario II 

 

4 Estimation of constrained Wiener filter 

In order to improve the estimation of the Wiener filter G, the imposition of a new constraint is proposed:  

 

 ˆ
P P

Y X GR   (6) 

 

Practically, the constraint imposes that the estimation of the periodic part of the signal should be equal to the 

result of the synchronous averaging. As a result, a new filter 
conG is constructed and proposed. 

The random complex variables  ~ 0,
R

N
N CN    ~ ,

R R

N
Y CN X  are considered. According to the central 

limit theorem applied on the Fourier transformation, the random complex variable  
R

Y f follows a normal 

probability density: 

 

 The independent observations  ,
R

Y f k , k=1,..., I of the random variable obtained over I consequent 

cycles follows a normal joint probability distribution: 

 

The principle of maximum likelihood consists in estimating the matrix 
con

G  which maximizes the probability 

of observation of the data  
R

Y f over the k=1,..., I measured cycles, i. e. the density, or using a more 

convenient approach,  its logarithm (or which minimizes the negative logarithm) under the constraint:  

 

 

 

  

 

 

 

 

 

The lagrangian of the minimization problem is introduced and after a number of steps the final result is 

given by the equation:  
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  (7) 

 

Returning to the statistical regression and the graphical representation, the imposition of the new 

constraint practically sets a constraint at the maximum least square error of the filter estimation as is 

demonstrated in Figure 5. 

 
 Figure 5: Maximum limit of the possible estimation error of the Wiener filter G. 

 

5 Combination of classical and constrained Wiener filter 

In order to improve the separation results, the classical and the constrained Wiener filter are combined in 

an optimization procedure. The constrained Wiener filter is applied only on the frequencies where the 

classical Wiener filter leads to an overestimation of the estimated contribution of each source and of the 

estimated overall noise in comparison with the overall measured noise at the specific frequencies. The 

procedure is briefly described in the following flowchart (Figure 6) where Syy is the spectral density 

function of the measured output, EstSyy is the estimation of the spectral density function of the output, 

EstSyiyi is the estimation of the spectral density of each source and Ns is the number of sources.  

 

 

Start

Gopt(f) = G(f) i=1 i=Ns?

EstSyiyi>Syy

EstSyy>Syy

Gopt(f)=Gcon(f)

Gopt(f)=Gcon(f)
No

Yes

Yes

No

i=i+1
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Stable number 
of frequencies

No

End

Yes

 
 

 Figure 6: Optimisation algorithm for the estimation of Gopt filter 

 

The algorithm scans all the frequencies and finds those frequencies where the application of the 

estimated Wiener filter G leads to an overestimation either of the estimated spectra of each source EstSyiyi 

or of the estimated spectra of the overall noise EstSyy. At the specified frequencies the filter G is substituted 

by the constrained filter Gcon. The algorithm iterates either till there is no overestimation or till the number of 

frequencies where overestimation comes up is stabilised. By following this approach a new Gopt filter is 

estimated. 

 

6 Experimental results 

The proposed method is applied on vibroacoustic signals captured at a test rig in order to quantify a) the 

contributions of the “total hydraulic noise” (originating mainly by four hydraulic pumps) and the 
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“mechanical noise” (originating from the various rotating parts of the engine) and b) the contribution of each 

hydraulic pump. The hydraulic pressures of the pumps are measured and used as reference signals.  

The test rig configuration is composed of an electric motor, a gearbox and four gear pumps, used for a 

number of tasks. The four pumps are separated in two groups and each group is mounted on the same shaft. 

The four pumps have the same number of teeth and rotate with the same speed, taking the motion from the 

main shaft through a level of gears. As a result the four pumps share also the same characteristic meshing 

frequency. The only difference of the pumps is their volume (VD<VA<VC<VB cc).  
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 Figure 7: Estimation of the contribution of each pump to the total noise using the Gcon
raw

 filter. 

 

The measurements were performed using a multi-channel data acquisition system and a number of 

different sensors, including accelerometers, proximity speed sensors, dynamic pressure sensors and 

microphones. The sampling frequency was selected equal to 40960 Hz.  
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 Figure 8: Estimation of the contribution of each pump to the total noise using the G
res

 filter. 

 

Under the predefined conditions it is expected that the measured acoustic signal consists only of the 

contributions of the four pumps and the “mechanical” noise. Four dynamic pressure signals (one from each 

pump) were used as reference signals. The acoustic and the pressure signals were firstly resampled in the 
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angular domain using the measured rotation speed. The signals after the resampling are forced to be 

cyclostationary and have the same number of samples per cycle. All cycles are perfectly synchronized and 

present the same statistical characteristics. The auto power and the cross power spectral densities of the 

references and the acoustic signal are estimated. A Hanning window is also used. Moreover the synchronous 

averaging is performed over all cycles based on the rotation speed of the pumps, leading to the calculation of 

the periodic part and the residual part of the signals. After the synchronous averaging and taking into account 

that there are no other mechanical parts rotating at the pumps’ speed, the processed signals comprise mainly 

the noise which is emitted by the pumps.  
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 Figure 9: Estimation of the contribution of each pump to the total noise using the Gcon
res

 filter. 

 

Two cases were further investigated. In the first one it is assumed that there are exactly four sources and 

that four reference signals are available, one for each source. The two predefined filters G
raw

 and Gcon
raw

 are 

estimated (using the raw signals). The filters were further applied on the raw reference signals and the 

contribution of each pump to the total measured noise is estimated. Moreover the total hydraulic noise and 

the total measured noise are calculated. Furthermore by using the technique of bootstrapping, the statistical 

confidence intervals of each of the contributions are estimated. The “A” frequency weighting is used and the 

results as expressed in dB(A) for 12 1/3 octave bands (400 – 5000 Hz) are presented in Figure 7. The 

standard reference sound pressure level of 20 micropascals has been used. The contribution of each pump is 

presented sequentially in bars for each 1/3 octave (bars 1-4). Moreover the estimation of the total hydraulic 

noise and the measured noise are presented in the same figure (bars 5-6). On the right side of the figure the 

total sum for each bar over the 17 1/3 octave bands (125 – 5000 Hz) are presented. It is clear that there is no 

overestimation neither of the contribution of each pump nor of the estimated total hydraulic noise. All the 

figures have the same scale. 

The second case investigated is a more general one. In this case it is assumed that there are more sources 

at the system than the available references. From the four available references signals, only two are used. 

The filters Gcon
raw

 and G
raw

 are calculated and the contribution of the corresponding two sources/pumps is 

estimated. The bootstrapping is also used in order to estimate the confidence intervals.     

Firstly the contributions of the pumps C and D are estimated using only theirs references. The filters G
res 

and Gcon
res

 are estimated and presented in Figure 8 and Figure 9. The filter G
res

 presents an overestimation in 

a number of 1/3 octaves. More specifically the contribution of the pump C and as a result the estimated 

hydraulic noise exceeds the measured noise level. On the other hand the application of the new filter corrects 

all the overestimations. Moreover by comparing the contributions of the pumps C and D calculated using 4 

references (Figure 7) and 2 references (Figure 9) it can be concluded that the new filter estimates with a 

sufficient accuracy the contribution of the pumps even when the number of references is smaller than the 
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number of sources. Afterwards the contribution of the pumps A and D are estimated by the application of the 

new filter which was calculated using only the 2 references and firstly the raw signals and secondly the 

residuals signals. The results are presented in Figure 10 and Figure 11 and are compared with the Figure 7. It 

is clear that the 2 sources are estimated very well by the new filter calculated on the residual signals (as is 

imposed by the proposed strategy). Respectively the results obtained by the new filter calculated on the raw 

signals present significant errors.  
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 Figure 10: Estimation of the contribution of each pump to the total noise using the Gcon
raw

 filter. 
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 Figure 11: Estimation of the contribution of each pump to the total noise using the Gcon
res

 filter. 

 

7 Conclusion 

In this study a novel source separation approach has been presented, based on cyclic Wiener filtering. A 

new constrained estimator of the Wiener filter is introduced and a strategy is described in order to help the 

choice of the part of the signals which should be used for the estimation of the filter. The estimated filters 

have been applied on acoustic signals captured on an industrial test rig and the results are very promising. 
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The contribution of the hydraulic noise of each pump has been well estimated even in the worst case where 

fewer references than sources are available. 
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