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Abstract
The problem of damage detection for wind turbine blades under varying environmental conditions and different
damage scenarios is considered. A lab–scale blade subject to two levels of damage and conditions is consid-
ered under conditions including sprayed water (simulating rain) and temperatures in the range [−20,20]◦C. A
vibration–based statistical time series type methodology employing Principal Component Analysis (PCA) is
postulated. Two different versions are employed: the first is an output–only scheme based on the vibration
response Power Spectral Density (PSD), and the second is an input–output scheme based on the input–output
Frequency Response Function (FRF). Detection is based on principal components selected to be independent
of environmental conditions, but still sensitive to damage. A single vibration acceleration response is used in
the study. The damage detection results are slightly better for the FRF based version, compared to the PSD
based one, with detection rates over 96.5% and false alarm rates below 1.5%.

1 Introduction

Structural damage detection is of primary importance in mechanical, aerospace and civil engineering. When
dealing with structural damage detection methods, it is very important to account for uncertainties in the mea-
surements and varying environmental and/or operating conditions. The fact of not taking them into consider-
ation is an important limitation of many existing methods, which is restricting their applicability. In order to
avoid such a situation, methods able to account for environmental and/or operational variability are needed.
This problem is often referred to as the data normalization problem (see [1] for a detailed review of such
methods). In general a big bank of data under normal condition (and varying environmental and operational
conditions) is needed. Mainly two classes of normalization methods can be used.

When the environmental and/or operational conditions are measurable and available, a first class of methods
is based on directly modeling the dependence of the environmental and/or operating conditions on the dynam-
ics. Within this class two further approaches may be distinguished. The first is a multi–model approach in
which a model is obtained for each specific condition, and then the models are linked via different techniques.
Some establish relationships between modal parameters (such as eigenfrequencies) and temperature by means
of correction formulae [2], ARX models [3] or linear filters [4]. Some others, link the obtained model parame-
ters to temperature via regression or interpolation techniques [5]. In [6] clustering for different environmental
conditions is introduced. The main drawback of this multi–model approach is that a large number of separate
models are obtained, not taking into account their potential interrelations. To overcome this drawback, global
models may be introduced. In [7] two such methods are described. The first is based on a Constant Coefficient
Pooled (CCP) model which provides an averaged description and consequently limited information of depen-
dence on environmental factors (in this case temperature). The second is based on Functionally Pooled (FP)
models, where this dependence is modeled in a functional form. This latter method offers a more compact
description of the dynamics, improved numerical robustness and estimation accuracy, as well as better overall
performance.

A second class of methods, that do not need the specific environmental and/or operational conditions to be
available, is based on obtaining a characteristic quantity that is sensitive to damage but insensitive to changes
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in the environmental and/or operating conditions. A number of methods may be used for obtaining such a
quantity, including a simple outlier analysis [8]; Principal Component Analysis (PCA) [8, 9] which searches
for orthogonal directions with maximum variability, and removes the first ones, in the hope that damage will
affect (also) some of the remaining components not affected by environmental and operational variation (in
[8] these first two techniques have reportedly not been very successful); factor analysis [10], which tries to
identify a linear subspace in which the environmental effects lie and then project the measured data in the
orthogonal subspace; averaging techniques [11], based on the null–space method, an averaged sample Hankel
matrix is used that already accounts for all the normal condition of the structure; cointegration [12], which tries
to find (and eliminate) common trends on the normal condition data that are often caused by environmental or
operational variations, and so on.

An important field of application of damage detection techniques in which the inclusion of varying envi-
ronmental and operating conditions is crucial, is that of renewable energy structures, such as wind turbines. For
wind turbines these varying conditions may be due to weather (temperature, humidity), wind speed, varying
rotational speed, and so forth. A change in a specific condition may often lead to a false alarm. The increase
in the size of wind turbines, in an effort to capture as much wind energy as possible, has led to increasingly
larger wind turbine blades. On the other hand, turbine blades are subject to damage, and this may even cause
damage to the tower [13, 14]. The need to continuously monitor the health state of these structures is thus
evident, as visual inspection is not a viable option. Previous studies [15] have analyzed changes in modal fre-
quencies under different damage scenarios of a laboratory scale wind turbine blade, reaching the conclusion
that the first seven modes may be sufficient to indicate damage. Yet no actual damage detection is performed.
In another study [16], fatigue tests on full size blades have been performed, using the results to validate dif-
ferent damage detection methods, such as acoustic emission, virtual forces, or time-frequency analysis. In
[13] a 1–meter–long section of a wind turbine blade has been analyzed via different vibration based methods:
Lamb wave propagation, frequency response analysis, and time series methods. The damage was simulated by
adding a piece of putty on the surface. In all methods the damage index (characteristic quantity) used has been
obtained from cross-correlations between a baseline signal and a corresponding signal from a current (healthy
or damaged) state, while slightly varying conditions are considered (position of the blade section on the table).
The differences due to damage in this case are larger than those due to the considered variations, and detec-
tion is performed by comparing to a single “healthy” baseline case with good overall results (of course with
dependence on the damage location).

In the present study a vibration–based statistical time series type methodology for damage detection under
varying environmental and/or operating conditions is postulated and applied to damage detection in laboratory–
scale wind turbine blades. The environmental conditions are varying due to the potential presence of sprayed
water (simulating rain) on the blade and temperatures varying in the range of [−20,20]◦C. The postulated
methodology belongs to the second of the described classes. This is a companion paper to our work in [17] and
extends it in the sense that it includes, along with the Power Spectral Density (PSD, output–only) based version
presented there, the Frequency Response Function (FRF, input–output) based version. One single vibration
response, together with the input in the FRF based version, is used at a time. In both papers the methodology
is based on Principal Component Analysis (PCA), with an additional difference being the way in which the
specific components are selected for damage detection.

2 The experimental set-up

The lab–scale wind turbine blade (length 0.77 m, maximum width 0.135 m, mass 0.646 kg) is shown in the
drawing of Figure 1(a). It is placed in a freezer and clamped (by means of 3 bolts – torque of 5 N·m) on one end
on a steel base in a cantilever position and excited by a shaker, see Figure 1(b). The experiments are carried out
under quasi–static thermal conditions, with the temperature obtained from a digital thermometer with a K–type
bead thermocouple attached near the clamp. The study focuses on the temperature range [−20,20]◦C. Water
spraying is used for simulating rainy conditions.

Two levels of damage are used: The first one (D1) is semicircular damage at the trailing edge of the blade
with a radius of 2.5 mm (Figure 2(a)). The second (D2) is based on the previous by enlarging the hole. The
total length now is 1.5 cm, whereas the depth remains at 2.5 mm (Figure 2(b)).

Damage detection is based on a single selected vibration acceleration response signal at a time. The ex-
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(a) (b)

Figure 1: (a) Drawing of the lab-scale blade showing the acceleration measurement positions (Y1–Y4; dis-
tances in cm), (b) photo of the experimental set-up showing the clamping, the shaker, and the acceleration
measurement positions.

Blade Health State
Temperature step – Number of experiments Total number of experiments

Number of cases (Temp. (at each temperature) (data records)
range −20..20◦C) Baseline Inspection Baseline Inspection

Healthy Step 2◦C – 21 cases 5 35 105 160 735 1 120
Healthy with water Step 4◦C – 11 cases 5 35 55 385
Damage 1 Step 4◦C – 11 cases 5 35 55 55 385 385
Damage 2 Step 2◦C – 21 cases 5 35 105 160 735 1 120
Damage 2 with water Step 4◦C – 11 cases 5 35 55 385
Sampling frequency fs = 5 120 Hz
Signal bandwidth 20−2 000 Hz
Signal length N = 32 768 samples (6.4 s)

Table 1: Overview of the experiments

citation is random stationary (bandwidth of 20− 2 000 Hz; details in Figure 3) and is measured by means of
an impedance head (PCB M288D01, sensitivity 98.41 mV/lb), it will be used in the FRF based version of the
method. Four lightweight accelerometers are used to measure the vibration response at Points Y1, Y2, Y3 and
Y4. All signals are collected by means of two SigLab modules at a sampling frequency of fs = 5 120 Hz.
Following sample mean subtraction, each signal is normalized to unit sample variance. An overview of the
experiments carried out is available in Table 1.

3 The damage detection methodology

The damage detection methodology is based on changes in the Power Spectral Density (PSD) of a single
vibration response signal (the output–only version) or the Frequency Response Function (FRF) of a single
vibration response signal with respect to the input (the input–output version) [18].

For a given measured vibration response signal y[t], and its corresponding input x[t], t = 1, . . . ,N (with
sample mean subtracted and normalized to unity sample variance), the Welch PSD and FRF estimates are used
[18] (MATLAB functions pwelch.m for the PSD and tfestimate for the FRF). Namely, the Welch PSD estimate
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Figure 2: Detail of the considered damages: (a) damage D1 (small), (b) damage D2 (large).

for the output sequence is given by:

Ŝyy(ω) =
1
K

K

∑
i=1

Y (i)
L ( jω) ·Y (i)

L (− jω), with Y (i)
L ( jω) =

1√
L

L

∑
t=1

a[t]y(i)[t]e− jωtTs , (1)

where ω ∈ [0,2π/Ts] stands for frequency in rad/s, j for the imaginary unit, K for the number of segments
(each of length L) and a[t] the selected time window. The superscript (i) indicates a specific segment of the
signal. Analogously the Welch PSD estimate for the input sequence Ŝxx(ω) is defined. The Welch Cross Power
Spectral Density (CPSD) estimate between the input and the output is given by:

Ŝyx( jω) =
1
K

K

∑
i=1

Y (i)
L ( jω) ·X (i)

L (− jω), with X (i)
L ( jω) =

1√
L

L

∑
t=1

a[t]x(i)[t]e− jωtTs . (2)

Finally the Welch FRF estimate is obtained as:

Ĥ( jω) = Ŝyx( jω)/Ŝxx(ω). (3)

In the following θθθ ∈ Rn represents the feature vector (characteristic quantity) to be used, which, in the
context of this study, is the PSD (output–only) or modulus of the FRF (input–output) at n selected frequencies.
Namely:

PSD based version (output–only) θθθ = [Syy(ω1), . . . ,Syy(ωn)]
T , (4a)

FRF based version (input–output) θθθ = [|H( jω1)|, . . . , |H( jωn)|]T . (4b)

As with all statistical time series methods for SHM [18], the damage detection methodology consists of two
distinct phases: Baseline and Inspection. In the baseline phase the PSD (respectively FRF) (which includes the
dynamics of the structure) in the healthy and damage states is obtained. In standard vibration based method-
ologies this is done using a single representative signal for each considered state. This selection is crucial for
the correct performance of the method, and the conditions under which this signal is acquired may be decisive
as well. Small changes in the environment, or a non–representative signal, may lead to inferior performance.
In order to overcome these difficulties, an approach in which multiple signals (under different conditions) are
considered in the baseline phase is adopted. In the inspection phase, given a new signal from an unknown
state of the structure and in unknown environmental conditions, the method uses hypothesis testing to decide
whether it is coming from the healthy or a damaged state of the structure. The two phases are described in more
detail in the sequel.
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Figure 3: Detail of the experimental set-up.

3.1 Baseline phase

By means of using Principal Component Analysis (PCA) [19, pp. 1-6] a (vector) characteristic quantity
(feature) insensitive to environmental changes, but still sensitive to the presence of damage, is sought. The
procedure works as follows:

• Step 1. Estimation of the feature covariance matrix. A set of ρ0 n−dimensional feature vectors θθθ ∈ Θ0
is used for the estimation of the covariance matrix. The features are obtained from different “healthy”
data records under different environmental conditions. The sample mean θθθ over all healthy data is then
obtained:

θθθ =
1
ρ0

∑
θθθ∈Θ0

θθθ , (5)

along with the sample covariance matrix:

P̂ =
∑θθθ∈Θ0(θθθ −θθθ)(θθθ −θθθ)T

ρ0−1
∈ Rn×n. (6)

It should be noted that for the proper estimation of the covariance matrix the feature vector dimension-
ality n should be sufficiently smaller than the number ρ0 of data records. When this is not the case, the
empirical covariance estimate is potentially ill–conditioned, and thus non–invertible. In such cases alter-
native estimators, such as a shrinkage–based covariance estimator (which is always well conditioned and
optimum in the mean square error sense) or a pseudomodel–based estimator may be used [20, 21].

• Step 2. Principal Component Analysis. The estimated covariance matrix is now decomposed using PCA
as follows:

P̂ = U ·ΛΛΛ ·UT , (7)

where

ΛΛΛ = diag(λ1, . . . ,λn) ∈ Rn×n, U = [u1 . . . un] ∈ Rn×n, (8)

with diag(. . .) designating a diagonal matrix composed of the indicated elements, λi(> 0) the i−th eigen-
value of P̂ ordered in descendent order, and ui the corresponding normalized eigenvector with i= 1, . . . ,n.
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The transformation into principal components for any feature vector θθθ is performed as:

s = UT (θθθ −θθθ) ∈ Rn (9)

which for elements in Θ0 warrants a sample mean of 0, and diagonal covariance matrix ΛΛΛ.

• Step 3. Dimensionality reduction. The aim is to define a set of Principal Components in which damage
detection is clear, irrespectively of the environmental conditions. Since in the construction of the co-
variance matrix different environmental conditions are accounted for, the majority of the variance in the
feature vector is expected to come from the variation of those conditions. For this reason the “last” prin-
cipal components (corresponding to the smallest eigenvalues) are expected to be less dependent on the
environmental conditions, but, hopefully, still sensitive to damage. The general idea is then to discard the
first n components, and from the remaining ones select a set of n0 components that collectively provide
sufficient sensitivity to damage, see Figure 4. For the selection of the specific components, in addition
to the set Θ0 (used for the estimation of the covariance matrix), a second set Θd consisting of ρd feature
vectors from damaged structural states, under different environmental conditions, is used. This is needed
in order to evaluate the damage detection capability of the different scalar components. The components
to be finally retained are those that offer the best damage detection capability. The selected mathematical
tool to measure this capability is the squared Mahalanobis distance1 (Matlab function mahal.m). The ref-
erence set, with respect to which the Mahalanobis distance is computed, is that of the transformed feature
vectors in Θ0. Due to the definition of the principal components, this set is characterized by sample mean
µµµ = 0 and diagonal covariance matrix, with elements λi, corresponding to the selected components in
each case.

The aim is to retain components for which the Mahalanobis distance is large when the feature vector
belongs to a damaged structural state, but small when it corresponds to a healthy state. In Figure 5 an
example involving three principal components is shown with sets Θ0 (represented by the blue triangles)
and Θd (represented by red circles). The blue set is the reference set with respect to which all distances
are measured. The red circles represent damage cases. The distances of all blue dots and all red dots with
respect to the set of blue dots are computed. It is seen how the blue triangles are centered around the zero
vector. The Θd set is not completely separated from the Θ0 one, but actually surrounding it. The aim is
to retain the components which make these two sets as separable as possible (blue set as close to the 0
j−dimensional vector, and red set as separated as possible, leaving in general the blue set inside it). The
inclusion of a new component should imply a better separation of the two sets.

Figure 4: The elements of transformed feature vector s in relation to dimensionality reduction.

The indexes of the selected components are denoted by b(1), . . . ,b(n0).

Once a feature vector θθθ is given, its transformation into principal components is computed by means
of equation (9). In the following when writing D2

j(θθθ) the squared Mahalanobis distance is meant in the
transformed principal component space using the j components characterized by indexes b(1), . . . ,b( j).

The specific substeps are as follows:

– Step 3a: Selection of n. A threshold is defined by 0 < δ < 1, and n is chosen as the minimum value
for which:

1Formally the Mahalanobis distance of a multivariate vector x = [x1, . . . ,xn]
T from a group of values with mean µµµ = [µ1, . . . ,µn]

T

and covariance matrix S is defined as [19, p. 237]

D(x) =
√

(x−µµµ)T S−1(x−µµµ).
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Figure 5: An example of 3–dimenional (three principal components) sets Θ0 and Θd .

∑
n
j=1 λ j

∑
n
j=1 λ j

≥ δ , (10)

The first n components are the discarded, and certain, specifically n0 components are to be kept
among the set {sn+1, . . . ,sn}, see Figure 4.

– Step 3b: Selection of n0 and specific components. This is an iterative step in which the introduction
of a new component is tested and accepted in case an improvement on the separability of sets Θ0
and Θd is achieved. At step j, with j = 1, . . . ,n−n, the inclusion of any component not previously
included is checked. In principle all the components are to be tested, even if really the process stops
after the selection of n0, so at j = n0 + 1, when the addition of a new component will no longer
involve an improvement in the separability of the two sets, as will be shown in the sequel. For this
process the following ratio is computed:

R j =
minθθθ∈Θd D2

j(θθθ)

maxθθθ∈Θ0 D2
j(θθθ)

(11)

where D2
j denotes the squared Mahalanobis distance with respect to the set Θ0, with the subindex

indicating the dimension of the space in which the distance is being computed (R j). This quotient
measures the ratio between the minimum Mahalanobis distance of all the “damaged” baseline data
records (the minimum is taken to consider the most difficult damage to be detected) with respect to
the set Θ0 and the maximum distance of the “healthy” ones to the same set (the maximum is taken
as this would be the most probable false alarm). Namely this distance is given by:

D2
j = sT

j ΛΛΛ
−1
j s j, (12)

with
s j = UT

j (θθθ −θθθ) ∈ R j, ΛΛΛ j = diag
(
λb(1), . . . ,λb( j)

)
∈ R j× j,

U j =
[
ub(1) . . . ub( j)

]
∈ Rn× j.

(13)

In the case j = 1, b(1) is selected as the index that maximizes the set:

{R1, b(1) = n+1, . . . ,n}. (14)

Once b(1) is selected and its corresponding ratio Rmax
1 computed, for each successive j = 2, . . . ,n0+

1 the set:

{R j, b( j) = n+1, . . . ,n, b( j) 6= b(k), ∀k < j}. (15)
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is maximized, b( j) is the index corresponding to this maximum Rmax
j .

The process is then repeated until Rmax
j = Rmax

j−1. In this moment n0 = j−1 (the first value for which
the maximum is achieved), and the maximum separability for the training sets Θ0 and Θd has been
obtained.
So, finally n0 components are retained and the matrix:

Un0 =
[
ub(1) . . . ub(n0)

]
∈ Rn×n0 , (16)

is used for transformation of new feature vectors by means of:

sn0 = UT
n0
(θθθ −θθθ) ∈ Rn0 . (17)

3.2 Inspection phase

In the inspection phase given a new feature vector θθθ u from an unknown state, the transformation of equa-
tion (17) with θθθ = θθθ u is done so sn0 ∈ Rn0 is computed (using θθθ from the baseline phase) and the squared
Mahalanobis distance:

D2
n0
= sT

n0
ΛΛΛ
−1
n0

sn0 , with ΛΛΛn0 = diag
(
λb(1), . . . ,λb(n0)

)
∈ Rn0×n0 (18)

is computed.
In a general context, by applying the central limit theorem, since each principal component is a linear

combination of random variables, normality may be assumed, even if the original variables are not normally
distributed (see [19, p. 236]). Taking this fact into account, the squared Mahalanobis distance in (18) is is a
sum of n0 squared N(0,1) and mutually independent random variables, so the distribution followed by D2 is χ2

with degrees of freedom given by the number of principal components retained in the process, namely n0.
Thus the hypothesis testing problem may be set up as:

Ho : D2
n0
(θθθ u) = 0 (null hypothesis – healthy structure)

H1 : Else (alternative hypothesis – damaged structure).
(19)

Taking into account that D2
n0
∼ χ2(n0), then for a selected α risk level (false alarm probability equal to α),

the quantity D2
n0
(θθθ u) should be in the range (0,χ2

1−α
(n0)] with probability 1−α , so the hypothesis test is:

D2
n0
(θθθ u)≤ χ2

1−α
(n0) ⇒ Healthy structure

Else ⇒ Damaged structure.
(20)

where χ2
1−α

(n0) denotes the critical point of the χ2 distribution with n0 degrees of freedom at level 1−α .

4 Results

The methodology described in the previous section is now applied to the data, for two different considera-
tions of the feature vector, as shown in equations (4a)–(4b). The results for the two versions are considered in
two different subsections. All the detailed results presented are based in output location Y2.

First, Welch based PSD and FRF estimates, obtained for long segments (L = 2 048 samples, 0% overlap,
K = 16 averaged segments) are depicted for output Y2 in Figures 6 and 7. The estimates are shown along with
their 95% confidence intervals (note that the confidence intervals are narrower for the FRF than for the PSD).

In Figures 6(a) and 7(a) the PSD and FRF, respectively, interval estimates for two “healthy” signals at two
different temperatures are shown, whereas in Figures 6(b) and 7(b) those of a healthy and a “damaged” signal
at the same temperature are shown. It is seen that changes in the PSD or FRF and interval estimate due to
temperature difference (even if it is just 4◦C) are larger than those due to damage at a fixed temperature (espe-
cially at high frequencies). This is a problem in standard methodologies, since they do not usually account for
environmental effects. With the present methodology a baseline reference that attempts to account for these un-
certainties is employed, so that damage detection may be performed irrespectively of the specific environmental
conditions under which the current signal has been acquired.
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Figure 6: Preliminary results: PSD estimates along with 95% confidence intervals for the vibration response
position Y2: (a) healthy case at 20◦C (black region) compared with healthy case at 16◦C (grey region), (b)
healthy case at 20◦C (black region) compared with damage 2 at the same temperature of 20◦C (grey region).
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Figure 7: Preliminary results: FRF estimates along with 95% confidence intervals for the vibration response
signal position Y2: (a) healthy case at 20◦C (black region) compared with healthy case at 16◦C (grey region),
(b) healthy case at 20◦C (black region) compared with damage 2 at the same temperature of 20◦C (grey region).

The specific values of the methodology are chosen as in Table 2. For good estimation of the covariance
matrix it is desirable to have more data records than parameters to estimate. For this reason PSD and FRF
estimation is based on a short segment length (L = 128). This, for positive frequencies only, gives rise to a
feature vector of length of 65 considering frequencies to 2 560 Hz ( fs = 5 120 Hz). Since the excitation range
has only been up to 2 000 Hz, the feature vector to be used is limited to a dimensionality of n = 51.

The set Θ0 is then composed of 5 data records per structural condition (baseline phase; Table 1) from all
available healthy conditions, which gives a dimension for this set of ρ0 = 160. Analogously for Θd , 5 data
records from each structural condition are used, resulting in ρd = 215 (Table 1). The values of n and n0 shown
in Table 2 are the ones corresponding to the PSD and FRF based versions in sensor position Y2. All of the
other parameters above, including δ and α , are kept common for all response (sensor) positions and both PSD
and FRF versions.

All positions have been analyzed with both versions of the methodology, and overall performance results
are provided in Table 3, where the two types of considered damages are distinguished. It is interesting that
the larger damage (D2) is slightly less detectable than the smaller one (D1). Although the precise reasons for
this are unclear, it may be related to the fact that – unlike with D1 – two cases (implying more variability) are
associated with D2: water sprayed and not sprayed (see Table 1).
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Estimation method Welch ρ0 160 (from 32 different conditions)
Window type Hamming ρd 215 (from 43 different conditions)
L 128 samples n PSD version: 11
Overlap 0 samples FRF version: 18
K 256 n0 PSD version: 12
n 51 FRF version: 13
δ 0.997 α 10−10

Table 2: Estimation details and specific values of parameters.

Method Sensor False alarms False alarm rate
Undetected damages Detection rate

D1 D2 D1 D2
PSD 1 2/1 120 0.2% 0/385 13/1 120 100.0% 98.8%

Based 2 15/1 120 1.3% 1/385 12/1 120 99.7% 98.9%
version 3 7/1 120 0.6% 4/385 22/1 120 99.0% 98.0%

4 12/1 120 1.1% 0/385 0/1 120 100.0% 100.0%
FRF 1 5/1 120 0.5% 0/385 35/1 120 100.0% 96.9%

Based 2 5/1 120 0.5% 1/385 14/1 120 99.7% 98.8%
version 3 3/1 120 0.3% 0/385 0/1 120 100.0% 100.0%

4 1/1 120 0.1% 0/385 0/1 120 100.0% 100.0%

Table 3: Detailed SHM results for each sensor position distinguishing the two versions (PSD and FRF) and the
two levels of damage severity (inspection data records only).

4.1 PSD based version results

To make the procedure clearer, let us show some intermediate results step by step for the second output.
The corresponding ones for the FRF based version are shown in the next subsection.

• Step 1: The 160 healthy data sets are used to compute the covariance matrix as indicated in Equation (6).

• Step 2: PCA is performed in the previously computed covariance matrix by means of the Matlab function
princomp.m.

• Step 3:

– Step 3a: The value obtained for n is 11, so this means that the first 11 principal components explain
the 99.7% of the variance present in the PSD. This is represented in Figure 8 (blue continuous line).

– Step 3b: Now an iterative process starts leading to the selection of the n0 components. The 160
“healthy” data records, along with the 215 “damaged” data records are used in this baseline phase
(Table 1). In Figure 9(a) just the first selected component behavior is shown, a great improvement
is achieved with the inclusion of the second component 9(b). The main objective is to maximize the
distance between the “healthy” data records and the “damaged” ones. In Figure 9(c) an intermediate
step is shown and in Figure 9(d) the final selection is shown with the data records considered in the
baseline phase. In this case it may be seen that now all “healthy” data records have distances lower
than the “damaged” data records, which is the desirable behavior. Note that in all subfigures of
Figure 9, “healthy” data records are indicated in blue, whereas damaged data sets are red (damage
1) or green (damage 2). These three groups are separated by dashed vertical lines. Data records are
ordered in descendent order of temperature. Also dotted vertical lines are included in the healthy
and damage 2 cases to distinguish the cases without water sprayed from the ones in which water
has been sprayed. The maximum distance from “healthy” data records and the minimum from the
“damaged” ones is color filled since this are the values used in the computation of each R j. In
Figure 10(a), the R j ratios are shown for a few iterations. On the horizontal axis n−n = 40 (from
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Figure 8: Baseline phase: Determination of n in the PSD and FRF based versions. The principal component
number is shown on the horizontal axis, and the fraction of variance cumulatively explained by the considered
component is depicted by the curve (blue solid line for the PSD based version and green dashed line for the FRF
one). The selected δ and the obtained n are indicated by the horizontal and vertical dashed lines, respectively.

the 12th until the 51st) components are analyzed. Since the selected number of components is 12,
only 12 iterations are done (then Rmax

13 = Rmax
12 ) the cases j = 1,5,10,12 are shown. The selected

components are marked with a solid blue circle.

In Figure 12(a) the final damage detection results with the selected principal components are shown in
the PSD based version for data records from the inspection phase (which are different from those used in
the baseline phase – cross–validation principle; Table 1). The first 1 120 data records are healthy time series
(35 for every temperature available with and without water), with 735 without water and the next 385 with
water; the next 1 505 data records correspond to damaged cases (also 35 data sets for every damage at specific
temperatures and with water sprayed when available), so the first 385 correspond to damage 1, the next 735
to damage 2 without water and the last 385 to damage 2 with water prayed. Healthy, damage 1 and damage 2
cases are separated by dashed vertical lines, the difference between water sprayed and not sprayed is made by a
dotted line for the healthy and damaged 2 cases. In the y axis the squared Mahalanobis distance is represented.
A total number of 15 false alarms and 13 undetected damage is obtained (1 from damage 1 and 12 from damage
2).

4.2 FRF based version results

The steps are exactly as before, so not all the written details are repeated here.
Step 3a for this case is also shown in Figure 8 (green dashed line). In this case the value obtained for n

is 18 (much bigger than before) so this means that the first 18 principal components explain the 99.7% of the
variance present in the FRF. So with respect to the PSD based version more components are needed to explain
the same amount of variance.

Figure 11 is the equivalent to the previously presented 9. For this case the value obtained for n0 is 13 (one
more than before). Now, in Figure 10(b) the cases j = 1,5,10,13 are shown. Again for the baseline data records
a perfect separation of both sets is achieved with the final selection of components. The separation was better in
the PSD based version for the baseline data records as can be seen by the higher value of R j obtained in Figure
10(a) with respect to the one obtained in 10(b). This can also be observed by comparing 9(d) with 11(d).

In Figure 12(b) the final damage detection results with the selected principal components are shown for
the FRF based version for data records from the inspection phase. Comments made in the previous subsection
regarding the description of the figure are again valid here. In this case a total number of 5 false alarms and 15
undetected damages are obtained (1 from damage 1 and 14 from damage 2). The number of false alarms has
been quite significantly reduced even if the undetected damages has slightly increased.
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Figure 9: PSD based version. Baseline phase (pictorial representation of Step 3 in selecting the principal
components to be included): Squared Mahalanobis distance from the various (“healthy” and “damaged”) data
records to the “healthy” set. The first 160 data sets (blue triangles) correspond to the healthy blade (the first
105 without water sprayed, the next 55 with water sprayed, separated by dotted vertical lines). The next 55 (red
circles) correspond to damage 1 and the last 160 (green circles) to damage 2 (also here the first 105 without
water sprayed, the next 55 with water sprayed, separated by dotted vertical lines). The three main groups are
distinguished by dashed vertical lines. The maximum distance among all “healthy” data records is designated
by a solid blue triangle. The minimum distance among all “damaged” data records is designated by a solid red
or green circle. (a) One principal component included, (b) two principal components included, (c) intermediate
step with six principal components included, (d) final selection of n0 = 12 principal components.

4.3 General remarks

Making the comparison between PSD (output–only) and FRF (input–output) based versions of the method-
ology, it is seen that the results are quite comparable. Overall, it can be said that the FRF based version performs
slightly better, as could be expected since more information is being used, but the improvement is not really
significant. Regarding the false alarms, all the values are under 0.5% for the FRF based version, whereas in the
PSD one some values are over 1%. With respect to undetected damages the FRF based version presents more
cases in which a 100% of success is achieved, even if for two of the outputs, there is an increase in the number
of undetected damages (from damage 2) with respect to the PSD based version.

5 Conclusions

A vibration–based statistical time series type damage detection methodology, capable of operating under
varying environmental and operational conditions, has been postulated based on Power Spectral Density (PSD)
(output–only) and FRF (input–output) estimation and Principal Component Analysis (PCA). Detection is based
on principal components selected to be independent of environmental conditions, but still sensitive to damage.
The methodology is characterized by conceptual and computational simplicity. Its application to damage de-
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Figure 10: Baseline Phase: The ratio R j computed for different iterations of addition of a new principal com-
ponent. The blue solid circles designate the principal component chosen for maximizing the ratio R j at each
step. (a) PSD based version, (b) FRF based version.

tection in a laboratory-scale wind turbine blade, subject to two levels of damage and varying conditions that
include sprayed water (simulating rain) and temperatures in the range [−20,20]◦C, has been demonstrated us-
ing a single vibration acceleration response. The methodology proved effective, exhibiting a detection rate of
over 99% for damage 1 and over 96% for damage 2 and a corresponding false alarm rate below 2% in all cases.
The performance of the FRF based version (input–output) is slightly better than the PSD one (output–only)
even if the improvement cannot be considered very significant.

The presented methodology will be next applied on a Finite Element model of a real full size wind turbine
blade, under different environmental conditions.
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[11] É. Balmès, M. Basseville, F. Bourquin, L. Mevel, H. Nasser, F. Treyssède, Merging sensor data from
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Acronym/Parameter name Description

PCA Principal Component Analysis
PSD Power Spectral Density

CPSD Cross Power Spectral Density
FRF Frequency Response Function

N Signal (time series) length
L Segment length in Welch based PSD or FRF estimation
K Number of non–overlapping segments in Welch based

PSD or FRF estimation
θθθ Feature vector (characteristic quantity) used in the PCA
n Feature vector length

Θ0 Set of “healthy” data records used in the baseline phase
ρ0 Dimension of set Θ0

Θd Set of “damaged” data records used in the baseline phase
ρd Dimension of set Θd

δ Value between 0 and 1 (see next item)
n Number of components explaining the δ ×100% of the variance
n0 Selected number of principal components used in detection
α Critical value for the hypothesis test

Table 4: Acronyms and symbols
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A Appendix

• Important conventions and symbols.

Bold–face upper/lower case symbols designate matrix/column–vector quantities, respectively. Matrix
transposition is indicated by the superscript T .

A functional argument in brackets designates function of an integer variable; for instance x[t] is a function
of normalized discrete time (t = 1,2, . . .). A functional argument including the imaginary unit designates
complex function; for instance X( jω) is a complex function of ω .

A hat designates estimator/estimate of the indicated quantity; for instance θ̂θθ is an estimator/estimate of
θθθ .

The subscripts ‘o’, ‘d’, and ‘u’ designate quantities associated with the nominal (healthy), damaged and
current (unknown) state of the structure, respectively.

Other acronyms and symbols used are shown in table 4.
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