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Abstract 
In trending and pattern recognition, the signal comprises a series of samples having a characteristic 

sequence, the so-called signature, repeatable from one measurement to another. Most of the non-repeatable 

part of the measurement comes from the measured intrinsic random contribution of the physical 

phenomenon, ambient noise, measurement system noise, and the temporal evolution of the physical 

phenomenon between two measurements.  Projection of the signal of N-samples in a multidimensional space 

R
N
 for several measurements (Fig. 1) shows a distribution close to a hypersphere of radius r, where r 

corresponds to the measurement standard deviation.  The estimated signature Si is located at the center of the 

hypersphere.  The measurements are grouped close to the hypersphere shell and the corresponding standard 

deviation around the radius r defines the “thickness” of the hypersphere shell also called the “hardness” of 

the hypersphere.  Known as the “sphere hardening phenomenon”, the hardness-to-radius ratio decreases with 

the increasing number N of dimensions.  The measurement probability density appears as a function of the 

distance between the measurement and the hypersphere surface, with this distance related to the hardness.  In 

the case of a large number of dimensions, the measurement distance to the hypersphere shell probability 

density function converges to a Laplace-Gauss model, thanks to the central limit theorem, and yields an 

analytical statistical formulation for the measurement likelihood.  In contrast to some state-of-the-art 

monitoring algorithms, the proposed method gradually increases the sensitivity with the new measurements.  

The occurrence probability of a “false positive” (false alarm) appears constant from start-up through the 

steady state: the false-alarm rate at start-up is similar to that occurring in the steady state. 

This paper explains the method, presents the mathematical developments and gives a sample application 

for monitoring substation equipment. In this application, the signal corresponds to the temporal envelope of 

the vibroacoustic operating noise.  Data collected over a period of more than three years demonstrates the 

sensitivity and robustness of the method. 

 

1 Background 

For three decades, measuring systems and mass memory have increased according to Moore's Law, 

doubling in power every 18 months.  However, the tools at our disposal for dealing with this information 

have not followed apace. Monitoring equipment is one of the applications that would benefit from this 

growth. In this area, the ideal solution for an average user is seen as a "black box with a red light" which tells 

him when his equipment has a behavior change.  Equipped with a self-learning ability, this tool requires no 

configuration effort from the user [1-4].  At the opposite end of the spectrum, the “knowledge box with a red 

light” calls for the participation of experts for the tool set-up and the process modeling approach has some 

drawback [5,6]: the set-up is time-consuming and shortcoming in modeling implies diagnostic error; many 

processes are too complex for modeling.  

The other issues are the "false positive" diagnostics or "false alarms" that undermine the credibility of a 

surveillance system.  If the alarm levels are adjusted to avoid false alarms, the system loses its sensitivity and 

it is easy to miss a fault.  Several methods have been put forward to solve this problem but some have been 

patented and are therefore not accessible without commercial agreement [2,3,7]. 

For a public utility like Hydro-Québec, the economic value of an accurate monitoring method is in the 

range of $100M/year.  For example, a specialized monitoring service provider typically proposes a 

monitoring solution at a cost of $1000/year/channel.  A hydroturbine has about 100 channels whereas a high-

voltage (HV) substation (transformer and circuit-breaker monitoring) has several hundred channels.  Since 

the Québec utility has 344 hydroturbines and 516 substations, the investment in R&D to find an alternative 

solution is justified.  
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We have developed a novel monitoring method using the “sphere-hardening phenomenon” well known in 

communication theory [8].  This method operates at the maximum likelihood. We will present the results 

collected from vibroacoustic measurements on equipment in an HV power substation.  The impact of the 

method appears wider than the application domain of equipment monitoring.  In fact, the method can be 

inserted in some existing solutions in mathematical statistics and operational research. 

 

2 Signal characteristics and mathematical contexts 

The method is applicable to signals comprising a series of samples having a characteristic sequence or 

signature repeatable from one measurement to another.  Most of the non-repeatable part of the measurement 

comes from the random contribution of the phenomenon, ambient noise, measurement system noise and 

temporal evolution of the phenomenon between two measurements.  The method enables variations of the 

measurements to be detected and quantified with respect to a signature, variations of a signature with respect 

to an initial signature, and a matching likelihood of a signature or a measurement with a specific signature 

pattern. 

A measurement may be a time series, an envelope, an order power spectrum [9], a scalogram, a 

spectrogram, a 2D image, etc. In the context of the results presented below, the signal is the vibroacoustic 

envelope of a commutation occurring in an HV power switching device.  Figure 1 illustrates 200 cumulated 

measurements by a time concatenation of successive histograms each corresponding to a time sample.  The 

vibroacoustic signature appears constant for a small set of successive commutations, a given load and a given 

temperature.  The evolution of a signature can be idle to progressive with the wear over numerous operations 

or sudden when a defect occurs.  

In the proposed method, the measurement is projected in a multidimensional space R
N
.  Many 

measurement projections are distributed within the shell of a hypersphere centered on the signature 

coordinates (Fig. 1).  A measurement noise corresponds to a vector starting from the signature coordinates 

and pointing to the measurement coordinates. The average noise is the radius of the hypersphere.  The 

method considers the total noise dispersion (i.e. the hypersphere radius) in R
N
 instead of a sample-to-sample 

local noise dispersion.  The hypersphere shell has a thickness, also called hardness.  The measurement 

population, the measurement dispersion and the number N of dimensions fix a standard deviation of the 

signature and the hypersphere thickness.  The signature and hypersphere shell thickness values are estimated 

by the method and used to scale up the deviation amplitude between the measurements. In the case of a large 

number of dimensions, a measurement distance with respect to the hypersphere shell probability density 

function converges to a Laplace-Gauss modeling and yields an analytical statistical formulation for a 

measurement likelihood.  

 

   
 

Figure 1: Time sample histograms from 200 vibroacoustic measurements (left) and artistic illustration of the 

hypersphere (right) of the measurements projected in a space R
N
. The hypersphere is centred on the 

estimated signature s corresponding to the measurement average. 

 

The proposed method has its origin in the communication theory where a set of received symbols 

corresponds to a set of packed but not overlapped hyperspheres in a space R
N
.  The communication channel 

capacity appears to be a function of the hypersphere packing density.  This geometric visual representation 

facilitates the understanding of the noise contribution on the hypersphere radius, on the packing density and 

on the final channel capacity. Instead of many symbols, the proposed method considers mainly one symbol, 

the so-called “signature”, and its corresponding hypersphere statistics.  However, for diagnostic purposes, 

many signatures can be processed in a pattern recognition survey. The communication theory and proposed 
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method share the same idea: the likelihood of a measurement is estimated from its distance to the 

hypersphere shell scaled to the shell thickness.  In the proposed method, if the monitored equipment has a 

new behavior, then the statistical likelihood of measurements of the new behavior exhibits a drop when 

compared to the signature estimated from measurements cumulated before the behavior change. 

 

3 Mathematical formulations of the proposed method 

For a signature Si, assuming a repetitive pattern signature ,i nS  over different noise realizations where "n" 

is a subscript corresponding typically to time, frequency, wavelet scale or component order, let us consider 

an N- samples measurement (Fig. 1) 

 ,mn i n mnX S n  ,  1,n N  (1) 

where mnn  is the additive noise and m a subscript of the measurement realizations.  Assuming a centered 

noise and many measurements of a same ,i nS  pattern, an R
N
 projection of the measurements exhibits a 

cluster centered on a point of R
N
 corresponding to the "i" signature estimate  

  ' ' ' '
,1 ,2 ,, ,...,i i i i NS S SS  (2) 

where the measurements  

  ,1 ,2 ,, ,...,m m m m NX X XX  (3) 

are distributed close to a hypersphere shell (Fig. 1, right).  Among different averaging options, a 

signature Si may be estimated from a set of M measurements using a uniform average 

 '

1

1 M

i i m
m

M


  S S X . (4) 

This signature estimation is the first part of the four parts of "R
N
 signature statistics". In some trending 

applications, an updated estimated signature and other estimations are generated by a moving average 

process.  A uniform average is presented here to keep the mathematical expressions short.  

For example, for a Euclidian metric with uniform averaging, the measurement used to estimate the 

signature distance (Fig. 1, right -2) 

  
2

' '

, , ,

1

N

m i m i m n i n

n

D X S


   X S  (5) 

has an expected mean for a set of M measurements.  This set exhibits a cluster centered on the estimated 

signature 
'
iS , not on the real signature iS .  The estimated signature appears in eq. 5 for two reasons.  First, 

the real signature is unknown and, second, an internal error of the signature estimation must not appear at 

this step.  Using eq. 5, an expected mean distance 

  
2

'

, , ,

1 1 1

1 1M M N

i m i m n i n

m m n

r D X S
M M  

      for m X cluster "i", (6a) 

or (on average less accurate) 

  
2

2 '

, , ,

1 1 1

1 1M M N

i m i m n i n

m m n

r D X S
M M  

     for m X cluster "i", (6b) 

appears close to the noise vector length expectation  2E mnN n  where E ( ) is the expectation function.  

This estimation (ri) will be referred to as the hypersphere radius.  The double of the expected measurement 

standard deviation relative to hypersphere shell calculated with 

  
2

2

, ,

1 1

1 M N
r

i i m n i n

m n

r X S
M


 

 
   

 
 

   (7a) 

from measurements or estimated with 

 
1

2

r

i ir
N

    (Gaussian white noise assumption) (7b) 

from the estimated radius length will be referred to as the thickness (as shown in Fig. 1, right).  In the case of 

Gaussian white noise, the estimated dispersion given with eq. 7b is less than that calculated with eq. 7a.  The 

accuracy of the standard deviation of the measurement increases with the number M of measurements made.  
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For a small value of M, the estimation error on the standard deviation, i.e. the dispersion of the measurement 

dispersion 

  
2

2

'
1

r
r i
i

M


 


 or 

 1MN2

1
ri

r'
i


  (Gaussian white noise assumption) (8) 

should be also taken into account.   

 

 
Figure 2: Illustration of the 

measurement Xm, the estimated 

signature '
iS  and their respective 

distance Dm,i with measurement 

dispersions and HRD amplitude. 

 
 

Referring back to Fig. 2, the measurement hypersphere radius ir  and shell thickness 2 r

i  are illustrated 

in 
N

R . The “
N

R measurement statistics” include the hypersphere radius ir , the measurement standard 

deviation 
r

i  and the dispersion of the measurement dispersion 
r'

i  (as shown in Fig. 2).   

The measurement hypersphere shell thickness is a function of the metric (e.g. Euclidian), the 

measurement signal-to-noise ratio (SNR) and the number of time samples N.  The ratio of the shell thickness 

over the hypersphere radius tends to 0 when N  .  As mentioned, this phenomenon is called sphere 

hardening.  Calculated using numerous noise samples, the expected distance m iX S  appears constant and 

corresponds to the measurement hypersphere radius. 

The estimated measurement hypersphere radius ri is computed from a finite set on M measurement 

realizations.  The estimated signature 
'
iS  corresponds to the 

N
R  coordinates that minimize the radius length 

(the estimated hypersphere radius being an underestimation of the real radius length).  A fourth part of the 

"
N

R measurement statistics" is formed from an estimated radius bias error  

 
 

1

1

s

i ir
M M

  


 , M >1, (9) 

that corresponds to an additional radius length observed for a measurement that is not included in 

the computed estimated signature:   : 1,m m MX .  This radius length bias is attributed to the 

average signature displacement when a new measurement is added to its estimation.  
Referring to Fig. 2, in a preferred trending analysis, a last measurement is compared with a signature 

moving average and the latter, in turn, is compared with a reference signature established at the start of the 

monitoring.  For the first comparison, when a measurement is near the hypersphere shell, the statistical 

deviation is governed by a ratio of a measurement-to-hypersphere shell distance over a measurement 

standard deviation, as expressed in eq. 7.  Moreover, a dispersion of the measurement dispersion is taken into 

account. Figure 2 illustrates the different contributions involved in a deviation probability estimation. The 

distance difference ,m i iD r  when   : 1,m m MX  or  ,
s

m i i iD r    when   : 1,m m MX  is related 

to the total dispersion of the measurement  

      
2 2 2

'X S r r
i i i      (10) 

in order to obtain the probability density  

  
   

2 2

, 2

,
2

s X S
m i i i iD r

m i X S
i

e
 

 

  


 X S  (11) 

for a large number N of dimensions, since for the contribution of numerous errors the hypersphere shell 

probability density function converges to a Laplace-Gauss modeling (central limit theorem [10]).  

When the dispersion function is unknown or does not correspond to a possible analytical modeling, a 

histogram may be built using the collected measurements to estimate the probability density function 
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corresponding to the measurement population.  A histogram interpolation may replace the modeling for 

further statistical formulations.  Note that, for a large number of dimensions, the radius length distribution 

corresponds to the sum of numerous independent random variables; the central limit theorem states that the 

resulting distribution converges to a Laplace-Gauss distribution.  With respect to the Laplace-Gauss 

modeling limitation, the hypersphere geometry shows a higher density of measurements on the inside of the 

shell than on the outside for a same distance to the shell (as shown in Fig. 1, right).  The Laplace-Gauss 

approximation is good when the shell thickness (also seen in Fig. 1, right) is much smaller than the shell 

radius, corresponding to a large number N of dimensions.  The modeling of Laplace-Gauss dispersion is 

valid for a large number of dimensions, facilitates implementation of the method and provides an analytical 

statistical predictability of the behavior (e.g., false-positive rate, probability of pattern matching). 

In a warning system that monitors a drift magnitude exceeding k times (k>0), the standard deviation σ, 

knowing that  

 
2

0

2
erf

z

z e d 


  ,  
2 22

0

2
erf 2

n

n

k
x

n

k e dx




 


   and  

    erfc 2 1 erf 2k k   (12) 

with the integration of probability density expressed in eq. 11, the probability of finding a measurement 

inside the shell exceeding the radius 202 of the cluster shell "i" by 
X S
ik 

 is 

  
 

 
 

2
2

,

2

0

, 0.5 0.5 0.5 erf 2
2

X SX S
ii

m i i

xk

m i X SD r k
i

e
P dx k



  

 

 
     X S . (13) 

The probability of finding a measurement outside the shell 
X S

i ir k   is 

  
   

,

, 0.5 0.5 erf 2
m i i

m i D r k
P k

 
  X S . (14) 

The probability of finding a measurement inside the shell 
X S

i ir k   is 

  
   

,

, 0.5 0.5 erf 2
m i i

m i D r k
P k

 
  X S . (15) 

The probability of finding a measurement inside and outside the shell boundaries 
X S

i ir k   is respectively 

       
,

, 1 2 0.5 0.5 erf 2 erf 2
m i i

m i D r k
P k k

 
     X S  , and (16a) 

       
,

, 2 0.5 0.5 erf 2 erfc 2
m i i

m i D r k
P k k

 
    X S . (16b) 

 
A distance between a measurement and the Si hypersphere shell is referred to herein as a hypersphere radius 

deviation (HRD) (Fig. 2) defined as 

 , ,m i m i iHRD D r   when   : 1,m m MX  (17a) 

and, when a measurement mX  does not contribute to the estimated signature, 

  , ,
s

m i m i i iHRD D r     when   : 1,m m MX  (17b) 

 
For example, in the case of a trending analysis, when the last measurement is compared with a signature 

average, an alarm may be set by fixing a k maximum value referred to as kmax. An alarm occurs when 

 maxk k  (18) 

with 

  
2

2
,m i

X Sk HRD i
 . (19a) 

or 

 
 

 
 

 

2 2 2
, , ,2

2

1 1
1 1

2 11 1

1

m i i m i i m i

i
i

D r D r D
k

r N MX S r
i N N M



      
        

           

 , M>1 (19b) 



6 

when rewritten in terms of measurement distance to estimated signature '
,m iD , average measurement distance 

ri , a number M of measurements and a number N of dimensions.  The false-alarm rate is defined by eq. 16b 

with k = kmax.  The method thus uses the ratio expressed in eq. 19 with a single statistical parameter kmax to 

monitor the whole measurement pattern.  At start-up, the small M value increases the dispersion (eqs. 8 and 

9). An HRD value observed at start-up appears less significant than the same deviation observed after the 

collection of more measurements.  From eq. 9b, k=0 when M=1: the zero-sensitivity reflects the unavailable 

statistic with only one measurement available.  For a small number of measurements, the k value increases 

rapidly with the contribution of each new measurement.  The 1+1/(M-1) factor in eq. 9b acts as a sensitivity 

reducer during start-up of the statistical estimation process.  Since the sensitivity gradually increases with the 

new measurements, the occurrence probability of “false positive” (false alarm) appears constant from start-

up through steady state. 

When the combined deviation of a plurality of L measurements is considered from the signature i, the 

corresponding k value can be estimated from the average HRD value. Less accurate,  

 

2

,2 2

1 1

1 1L L
l i

l

l l

HRD
k k

X SL L
i 

 
  
 
 

   (20) 

is another estimation expression for combining many measurements.  The same expression can be used to 

combine a plurality of L measurement deviations from the same number of corresponding signatures 

projected in different R
N
 subspaces when 

 
,l

l

HRD i
k

X S
l




. (21) 

Note that in the latter case, since k is dimensionless, the engineering unit corresponding to the hypersphere 

subspace l can be fixed arbitrarily.  For example, using eqs. 20 and 21, it is possible to mix the deviation of a 

vibration reading with the deviation observed on multiple temperature readings. 

 

 
 

 

 

Figure 3: N-dimensional illustration of 

the trend of a signature captured at four 

different times. 

 

 
 

 

Figure 4: N-dimensional illustration of 

the trending of a signature captured at 

two different times where the 

measurement dispersion appears larger 

for the last signature Si+1. 

 

 
 

Referring to Fig. 3, a trend in a signature may be considered as successive signatures starting from an 

initial signature. Different possibilities exist for the evolution step between two successive signatures.  A first 

possibility is easier to detect and corresponds to the case of (Si,Si+2), (Si,Si+3) and (Si+1,Si+3) comparisons. 

The comparisons (Si,Si+1) and (Si+1,Si+2) are more difficult since two hyperspheres are overlapping; some 

measurements may be shared by both clusters. The problem is a signature-to-signature discrimination and 

distance estimation. Figure 4 shows the worst case where the signature step is less than the noise radius and 
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where the noise fluctuation is also in the same amplitude range as the step. In the case illustrated, the 

measurement dispersion appears larger for the last signature Si+1.  These illustrations may also be applied for 

pattern recognition where a running signature is compared to a signature extracted from a database.  It will 

be seen that the R
N
 representation of the signal allows discrimination of two signatures even if the signature 

hyperspheres overlap. 

 

Referring to Fig. 5, the coordinates of the estimated signature '
iS  in N

R  appear to be a function of the 

available corresponding measurements (as shown in Fig. 1, right). Different measurement sets yield different 

estimated signature coordinates.  There exists an estimation bias E '
i iS S  as well as an expectation for the 

bias dispersion.  As illustrated on the left, two signature estimations '
iS  and '

jS  are located on their 

respective signature hyperspheres, both centered on their common denoised signature S. As second part of 

the "
N

R signature statistics", the estimated signature '
iS  hypersphere radius  

  
2

' 2

, ,

1 1

1 1 1 1M N
s

i m n i n i i

m n

r X S r r
M M M M 

         (22) 

decreases when the number of measurements increases. As a third part of the "
N

R signature statistics", the 

signature dispersion (as shown in Fig. 7) 

 
 

1

2 1

s

i ir
N M

  


 , M>1 (23) 

decreases when the number of dimensions increases. The estimated radius bias error 
s
i  (as shown in Fig. 7) 

given by eq. 9 is a fourth part of the "
N

R signature statistics" and corresponds to an internal error of the 

signature estimation location in 
N

R . 

 

 

 
Figure 5: Schematic diagram 

illustrating hyperspheres of two 

signatures related to a same 

denoised signature and a 

hypersphere corresponding to 

signature subtraction. 

 
 

 

Note that s

i  has the same mathematical expression as the "dispersion of the measurement dispersion" 

'r

i  (eq. 8). In some special cases, these two estimations do not correspond to the same dispersion 

phenomenon:  For example, considering a merging of two signatures estimated with different noise 

amplitudes, the dispersion 
s

i  decreases when 'r

i  may increase with the merging.  

 
The distance between two hyperspheres can be illustrated as one hypersphere centered on a zero-origin 

coordinate (Fig. 5, right).  The hypersphere radius length of the signature distance  

    
2 2

,
s s s

i j i jr r r   (24a) 

is the quadratic sum of the respective hypersphere radius lengths.  Including the internal error in the radius 

length, the signature distance hypersphere radius length 214 can be rewritten 

      
2 2 2

, ,
s s s s

i j i j i jr r     . (24b) 
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A distance between two signatures is referred to herein as a hypersphere signature deviation (HSD) 

defined as 

      
2 2 2

, , , , ,
s s s s

i j i j i j i j i j i jHSD D r D r          . (25) 

 

Figure 6 illustrates a signature-to-signature comparison.  The estimated signature '
iS  hypersphere radius 

given in eq. 22 is used in the case of a uniform average.  For a moving average signature with non-uniform 

weighting, the radius has a different mathematical expression.  Whatever the mathematical expression of 

averaging and the corresponding dispersion, the total dispersion between signatures 

      
2 2 2

,
S S s s
i j i j      (26) 

is related to HSD in order to obtain the probability density  

  
 

2
2
, ,2

,

,
2

S S
i j i jHSD

i j S S
i j

e


 




 S S  (27) 

in the case of a Laplace-Gauss dispersion modeling.  Note that, when , ,
S S s
i j i jr   , the R

N
 representation of 

the signal may allow discrimination of two signatures even if the signature hyperspheres overlap.  From eq. 

12 and integrating the probability density expressed in eq. 27, the probability of finding the moving-average 

signature inside the ,
S S
i jk    limit is 

  
 

 

2
2

, , ,

,

2

,0

, erf 2
2

S S S S
i j i j i j

i j

k HSD

i j S SD k
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For example, in a signature-to-signature comparison, an alarm may be set by fixing a k maximum value kmax. 

An alarm occurs when maxk k  with 

 , ,i j
S Sk HSD i j  . (29) 

 
The false alarm rate is defined by eq. 16b with k = kmax. The method thus uses the ratio expressed in eq. 29 

with a single statistic parameter kmax to monitor the whole signature pattern matching. 

 

 
 

Figure 6: Illustration of the estimated 

signature 
'
iS  to estimated signature '

jS  

distance Di,j with the total signature 

dispersion 
SS

j,i
  and the hypersphere-

to-signature distance (HSD). 

  

 

 
Figure 7 illustrates a simulated example of the sphere-hardening phenomena occurring with the increased 

dimensionality.  Four different noise sources (Gaussian, linear, quadratic and cubic) are selected randomly 

for the N dimensions with different amplitudes in the same range.  For a few dimensions, the HRD shows a 

probability density function which does not match the Laplace-Gauss distribution well.  For dimensions 

having different noises in the same dispersion amplitude range, a Gaussian match is observed for as low as 

10 dimensions.  The simulation case of N= 900 (Fig. 8, bottom) corresponds to the 900 time samples 

vibroacoustic measurement illustrated in Fig 1. 
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Figure 7: Illustration of the projection in 2D of 4000 noise measurements for N= 4, 40 and 900 dimensions.  

Radius length dispersion histograms are presented in standard deviation (STDV) bin units. 

 

4 Trending of vibroacoustic commutation envelope signal 

This section compares the application of the novel method against the classic N  threshold (normal law) 

alarm limit method by using a subset of a field experience measurements.  For the last three years, a 

vibroacoustic data acquisition system has been acquiring vibroacoustic commutation signals from power 

transformer equipment in an electrical substation.  Signal processing is applied to the vibroacoustic 

waveform to extract its envelope and the envelope is then processed by the two methods. 

 

The case we present is a comparison of the two methods applied to the trending of vibroacoustic 

measurements.  First we compute the results of both methods without any alteration of the measurements.  

We then compute the results of the two methods inserting a state change that occurs linearly with time on the 

real measurements.  In this comparison we use 328 measurements of a specific movement of power 

transformer equipment.  Figure 8 shows the 328 overlapping vibroacoustic envelope measurements. 
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Figure 8: Overlapping vibroacoustic measurements from field experience. 

 
Figure 9 shows the results of the two methods without any alteration to the measurements.  At first sight it 

may be observed that the HSD (eq. 25) results look smoother than the traditional method.  The reason for this 

is that the HSD makes an overall assessment of the comparison between the reference signature and the 

moving-average signature as opposed to the traditional method which makes a local assessment of the 

comparison by taking the worse sample deviation.  It may be observed that there is no over-limit when using 

either method.  The normal wear from the last three years’ operation of a piece of equipment awaiting a 

major overhaul explains the trend observed in both graphs in Fig. 9. 

 

 
Figure 9: Results of the two methods without any alteration to the measurements. 

 

Figure 10 shows the state change introduced in the measurements in order to simulate a trending towards 

an imminent failure in the equipment mechanism.  The simulation of the state change works as follows: 

whenever a new measurement comes in, it is modified with the amplitude weights and timing weights (see 

Fig. 10), which are computed linearly based on the number of measurements that the state change takes to 

develop.  In this simulation the state change starts at measurement #40 and develops over 288 measurements.   

Figure 11 shows the results of the simulation.  With the use of the novel method presented here, the trend is 

easily observed as exceeding the limit.  Furthermore, the limit is created dynamically and stabilizes as the 

number of measurements increases.  With the traditional method, one can see a semblance of a trend but not 

as pronounced with the new method.  Finally, the traditional method never exceeds the alarm threshold. 
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Figure 10: Simulation of a state change in the monitored equipment. 

 

 
Figure 11: Results of the two methods with a linear state change on the measurements. 

 

5 Conclusion 

The R
N
 signal projection allows the sphere-hardening phenomenon to be used in pattern matching and 

pattern pursuit of a characteristic sequence repeatable from one measurement to another.  This signal 

sequence can originate from a temporal sequence, e.g., an order power spectrum, a scalogram or a 

concatenation of measurement channels.  This paper has given the sets of equations for matching, i.e. 

signature-to-signature comparison, and for pursuit, i.e. signature trending considering a new measurement. 

This method is recommended in the context of many dimensions (>4) and many measurements (>30).  For a 

set of N non-cross-correlated signal dimensions, the accuracy increases by a factor of N .  For a large 

number of dimensions (>30), the probability density function of the measurements contained in the 

hypersphere shell converges to a Laplace-Gauss model: the matching and pursuit likelihood is described by 

the well-known Laplace-Gauss formulation facilitating the implementation and understanding of the alarm 

algorithm.  In our context, namely the trending of a vibroacoustic time signal signature (900 samples), the 

method yields a significant increase in the ratio of sensitivity over a false-alarm rate compared to the classic 

standard deviation method for simulated defects on real measurements.  Moreover, the sensitivity of the 

method is self-learning: the sensitivity gradually increases with the new measurements and the occurrence 

probability of “false positives” (false alarms) appears constant from start-up through the steady state.  For the 

monitoring system implemented, this method seems to be the only acceptable solution. 
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