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Abstract 
This paper describes numerical simulation of impact responses for a viscoelastic shock absorber connected 

with a S-shaped structure using a finite element method. This S-shaped structure is a part of a force 

transducer. And the shock absorber is a specimen to be measured its impact responses when the levitated 

mass is collided with it. In this analysis, the viscoelastic absorber is modelled by using a nonlinear complex 

spring to describe its nonlinear hysteresis under relatively large deformation. One end of this nonlinear 

spring is connected to the S-shaped structure. The other end is connected to the levitated block. The S-shaped 

structure and the block are modelled by three-dimension finite elements. The levitated block has initial 

velocities and collides with the shock absorber. Acceleration of the S-shaped elastic structure and the 

levitated block are measured using Levitation Mass Method proposed by Fujii. The calculated accelerations 

from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also 

investigate dynamic errors of the S-shaped force transducer due to elastic modes in the S-shaped structure. 

 
 Introduction 

Various viscoelastic shock absorbers are utilized to diminish impacts from precision instruments and so on. 
Under relatively large deformation, the viscoelastic absorbers sometimes have nonlinearity between their 
restoring forces and deformations [8-10]. Moreover, their restoring forces sometimes have nonlinearity in 
hysteresis. Therefore, it is important to investigate nonlinear dynamic characteristics of viscoelastic 
absorbers connected to elastic structures under impact load.  

Using a fast finite element method proposed by Yamaguchi
 
[1-2], this paper describes numerical 

simulation of impact responses for a viscoelastic shock absorber connected with an elastic structure. As an 
example of the elastic structure, we deal with an S-shaped structure, which is a part of a force transducer as 
shown in Fig.1. In this simulation, the viscoelastic absorber is modeled by using a nonlinear complex spring. 
The restoring force of the spring is expressed as power series of its relative displacement between two ends. 
The restoring force also involves nonlinear hysteresis damping because the hysteresis depends on its 
deformation. We introduce complex spring constants for not only the linear component but also nonlinear 
components of the restoring force. We express a finite element of the nonlinear complex spring and the 
spring is connected to an S-shaped elastic structure modeled by linear finite elements.  

The discretized equations of these structures are transformed from physical coordinate to the nonlinear 
ordinary coupled equations using normal coordinate corresponding to linear eigenmodes. Further, we 
integrate the transformed equations numerically in drastically small degree-of-freedom. 

In this paper, our proposed FEM is applied to clarify dynamic errors in the S-shaped force transducer 
when we measure transient responses of the viscoelastic shock absorber. The transient responses are obtained 
when the levitated block is collided with the absorber. We check the validity of the calculated results in 
comparison with the experimental results. 
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Further, to evaluate the dynamic errors in the force transducer, the reference force is also measured using 
Levitation Mass Method proposed by Fujii [3]. We checked dynamic errors between the reference force and 
the force measured by the transducer itself in the previous paper [3]. The experimental dynamic errors [3] are 
compared with the calculated data from our proposed FEM. Moreover, we investigate and find out the causes 
of the dynamic errors as nonlinear oscillation phenomena. 

 
 Experimental setup and results [3] 

Figure 1 shows a schematic diagram of the experimental setup performed by Fujii in the previous paper 
[3]. An S-shaped force transducer, shown in the photograph in Fig.2, is connected with a viscoelastic shock 
absorber. To evaluate impact responses of the viscoelastic absorber, a block levitated by linear pneumatic 
bearing is collided with the absorber in z direction. And their transient responses are measured using the 
force transducer. As shown in Fig.2, the S-shaped structure in the force transducer contains two thin 

members in the vicinity of a central hole. These two members correspond to a pair of parallel springs in z 
direction. Strains are measured using strain gauges attached in the S-shaped structure when external dynamic 
load is exerted in z direction. Using a 
bridge circuit and the measured strains, 
forces

transF  of the impact responses are 
measured. 

To validate accuracy of the measured 
force

transF , Fujii additionally measured the 
velocity 

1v  of the levitated block using an 
interferometer as illustrated in Fig.1. 
Firstly, acceleration 

1a of the levitated 
block can be identified by differentiating 
the measured velocity

1v with respect to 
time. The reference force 

11aMFmass  is 
obtained using the acceleration 

1a  and 
mass kgM 6526.21   of the levitated block 
if the block can be regarded as a 
concentrated mass. In the previous paper 
[3], Fujii compared between the reference 
force 

massF  and the force 
transF  measured 

from the S-shaped transducer itself as 
shown in Fig.3. And he found out that 
small dynamic errors are hidden in the measured force 

transF of the S-shaped transducer. In Fig.4, a time 
history of the difference 

masstrans FFF  between the measured force 
transF by the transducer itself and the 

reference force
massF . Fujii pointed out that the difference 

masstrans FFF   are related with 22aM . 
2a  is the 

acceleration of the S-shaped structure and 2M  is mass of a half portion of the S-shaped structure. Fujii 
proposed a correction of the measured force

transF  by the transducer itself using an expression
22aMF  . To 

estimate correction force F , Fujii fabricated an accelerometer to the movable half portion in the S-shaped 

Figure 1: Outline of experimental system [3] 
Figure 2: Photograph of the S-shaped force 

transducer [3] 

Figure 3: Comparison 
between the measured 
force  the S-shaped 
transducer and the 
reference force  
using Levitation Mass 
Method [3] 

Figure 4: Comparison 
between the measured 
dynamic error 

 and 
the estimated error using 
acceleration  of the 
S-shaped structure [3]

 

 



3 

structure as illustrated in Fig.1. The measured acceleration 
2a from the accelerometer is used to correct the 

measured force 
transF  in real time. In this paper, numerical analysis for this experimental system are carried 

out to investigate the correction force F which corresponds to the difference between 
transF  and 

massF . 
These experimental data are compared with our computed data in this paper to validate our proposed FEM 

with consideration of nonlinear complex springs. 
To get the reference force

massF , Levitation Mass Method (i.e. LMM) is utilized. The detail setup and 
procedure of the LMM experimental system are noted as follows. As illustrated in Fig.1, the LMM 
experimental system contains a levitated mass (i.e. this corresponds to a levitated rigid block), which is able 
to move along a guide way in z direction due to a pneumatic linear bearing. The block is levitated due to air 
film at the interfaces between the block and the guide. Thickness of the air film is 8 μm. Pressure at the 
interfaces is self-controlled by orifice effect to keep the thickness of the air film. Due to this system, the 
block can travel in the z-direction with extremely low friction. An extension rod is fabricated on the levitated 
mass. Initial velocities 0v  are given with the levitated block manually. The block is collided with the 
viscoelastic shock absorber connected with the S-shaped force transducer. This sophisticated experimental 
system is named as Levitation Mass method by Fujii

 
[4-6]. Near the transducer, the accelerometer is 

fabricated as we mentioned before. One end of the S-shaped force transducer is fixed on the rigid base. Note 
that a gel is filled in the central hole of the S-shaped structure to increase damping as shown in Fig.2. 

 

 Numerical simulation 

As shown in Fig.5, we evaluate the FEM model for the S-shaped structure in the force transducer. Both the 
S-shaped structure and the levitated block are modeled as an elastic body using three dimensional finite 
elements. The viscoelastic shock absorber is modelled by a nonlinear spring with nonlinear damping using 
nonlinear complex spring constants. We set the origin of this model on the position where the levitated block 
begins to contact with the viscoelastic shock absorber. We give an initial velocity 

0v = -180 (mm/sec) in z-
direction to the levitated block by a hand. 
 

 Discretized equation for the viscoelastic absorber 

Using a concentrated nonlinear spring with nonlinear hysteresis, the viscoelastic absorber is expressed. To 
express the nonlinear hysteresis, we propose and introduce a nonlinear complex spring. We set that the 
nonlinear complex spring with viscoelasticity has principal elastic axis in z  direction as shown in Fig.5. We 
denote the displacement in z  direction at the nodal point   as zU  where the S-shaped force transducer is 
attached with one end of the nonlinear complex spring (i.e. the viscoelastic absorber). zU is the displacement 
at the nodal point   on another end of the nonlinear complex spring. At this nodal point  , the levitated 
block is connected with the viscoelastic absorber. We use nonlinear function using power series for the nodal 
force of the complex spring at the point . Thus, the restoring force of the complex spring is expressed using 
the relative displacement zU - zU  between zU  and zU  as follows. 

 

 zR )(1 zz UU   + 2)(2 zz UU   + 3)(3 zz UU    (1) 

 

 

Figure 5:  Simulation model 
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Firstly, we introduce conventional linear hysteresis damping as )1( 111 sj  . j  is imaginary unit. 
1  is 

the real part of 
1  and 

1s  is material loss factor of the concentrated spring. Further, we propose and 

introduce nonlinear hysteresis damping as )1( 222 sj   and )1( 333 sj  in the same manner. 
2  and

3  

are the real part of 
2 and 

3 ,respectively. 
2s and 

3s  are nonlinear components of material loss factor for 

the concentrated spring, respectively. For the nonlinear complex spring, nonlinear spring constants have 

complex quantity to represent changes of hysteresis due to the deformation of the spring. The restoring force 

of the nonlinear complex spring can be written in the matrix form as follows. 

 

 zR }{}]{[}{ 1 dUr s    (2) 
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Where }{ sU  is the nodal displacement vector at the nodes. }{r  is the nodal force vector at the 

nodes and  . }{d  is the vector including nonlinear terms of the restoring force. ][ 1  is the complex stiffness 

matrix containing only linear term of the restoring force. The following linear and nonlinear complex spring 

constants are used for the later computations. 

1 =1.37  10
4
 (N/m), 

2 =0.00 (N/m
2
),

3 =2.35 10
11

 (N/m
3
), 

1s =0.300, 
2s =0.000, 

3s =0.300. 

. 

 Discretized equations of the S-shaped force transducer and the 

levitated block  

For the elastic structure of the S-shaped force transducer and the levitated block, we assumed that 

equations of motion are expressed under infinitesimal deformation using conventional three-dimensional 

finite elements. These are made by aluminium. To add damping effects, a viscoelastic gel is filled in the 

central hole of the force transducer as shown in Fig.2. Thus, we also create the three dimensional finite 

elements for the gel as depicted in Fig.5. Viscoelasticity of the gel is taken into account using complex 

modulus of elasticity )1( ggg jEE  . The real part 
gE  of the 

gE  stands for the storage modulus of elasticity 

while 
g  is the material loss factor of the gel. By superposing all elements related to the S-shaped transducer, 

the levitated block and the gel, the following equations are obtained. 

 

 }{}]{[}]{[ sssss fuKuM   (3) 

}{}]{[}]{[ ggggg fuKuM                                               (4) 

                                                                }{}]{[}]{[ LLLLL fuKuM   (5) 

  

Where, ][ sM , ][ sK , }{ sf  and }{ su are the mass matrix, complex stiffness matrix, nodal force vector and 

displacement vector for the elements of the S-shaped transducer denoting by the subscripts s in Eq. (3). The 

subscripts g in Eq. (4) and subscripts L in Eq. (5) denote the gel and the levitated block, respectively. For the 

three dimensional finite elements of these solid structures, isoparametric hexahedral elements with non- 

conforming modes [11-12] are mainly adopted. 

 

 Discrete equation for combined system among the S-shaped force 

transducer, the viscoelastic absorber and the levitated block  

In Eq. (2), the restoring force }{r  is added to the nodal force at the ends of the nonlinear complex spring 

on the nodes  and  . On the node  , the nonlinear complex spring (i.e. the viscoelastic shock absorber) is 
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connected with the S-shaped force transducer in Eq.(3). On the node  , the spring is also connected with the 

levitated block in Eq.(5). Finally, the following expression in global system can be obtained using Eqs.(2)-

(5). 

 

 }{}ˆ{}]{[}]{[ fduKuM   (6) 

 

Where, }{ f , ][M , ][K  and }{u are the displacement vector, mass matrix, complex stiffness matrix and 

external force vector in global system, respectively. }ˆ{d  is modified from }{d to have the identical vector 

size to degree-of-freedom of the global system. 

 

 Approximate calculation of modal damping  

Under infinitesimal deformation, we use the following complex eigenvalue problem of Eq. (6) by 
neglecting the terms of the nonlinear restoring force and the external force to calculate modal loss factors as 
imaginary part of eigenvalues. These parameters correspond to linear modal damping. 

 

 }){)1(][])[1()(( )(
max

1

)(2)( i
e

e

eeRe

i

tot

i jKMj 


 }0{  (7) 

 

where, 2)( )( i  is the real part of complex eigenvalue. }{ )(i is the complex eigenvector and 



  is the 

modal loss factor. 
e  containes 

1s  and 
g . Superscript 



 denotes the i-th eigenmode.  Next, the 

following 
e  

are introduced using the maximum value max  among the elements' material loss factors
e , 

),...3,2,1( maxee  . 

 

 1,/ max  eee   (8) 

 

Solutions of Eq.(7) are expanded using a small parameter
max j  on assumption of 1max  as follows 

[13],[2]. 
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Above equations, we can obtain  



    under conditions of



   and 1max  . Therefore, 



   also 

become small parameter like  . 

In the equations, 



 , 



 , 



 ,...  and )(

1

i ,



 , )(

5

i ,...
 
 have real quantities. By Substitution of Eqs.(9)-(11) 

into Eq. (7), we obtain approximate equations using 



  and 



  orders. As a result, the following equation can be derived 

by arranging the approximate equations [13],[2]. 
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From these expressions, we can calculate modal loss factor 



  using material loss factors e  of each 

element e , share )(i

eS  of strain energy of each element to total strain energy. 

 

 Conversion from the discretized equation in physical coordinate to the 

nonlinear equation in normal coordinate 
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If we compute Eq.(6) directly in physical coordinate, it requires much computational time because of large 

degree-of-freedom. Therefore, we introduce computational method to diminish the degree-of-freedom for the 

discretized equations of motion Eq.(6).  

It is assumed that we approximate linear natural modes }{ )(i of vibration to
0

)( }{ i . The nodal 

displacement vector }{u  can be expressed using both 
0

)( }{ i  and 
ib

~
 by introducing normal 

coordinates 
ib

~  corresponding to the linear natural modes
0

)( }{ i [14]. 
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bu   (13) 

 

By substitution of Eq.(13) into Eq.(6), we obtain the following nonlinear ordinary simultaneous equations 

as to normal coordinates 
ib

~
. 
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where, )(i

tot  is the i-th modal loss factor. )(

0

i
  represents the i-th eigenfrequency. Subscript t  following a 

comma denotes partial differentiation with respect to time t . 
iz  is the z-component of the eigenmode 

0

)( }{ i at the connected node   between the S-shaped force transducer and the viscoelastic shock absorber. 

We can save computational time drastically because Eq. (14) has much smaller degree-of-freedom than that 

of Eq.(6). 

 

 Nonlinear impact response 

An initial velocity is given to the levitated block attached with the viscoelastic shock absorber. And 
nonlinear impact responses of the viscoelastic absorber with the S-shaped structure are computed by 
applying Runge-Kutta-Gill method to Eq.(14). 

 

 Numerical results and discussion 

 Validity of the proposed FEM 

In this section, we validate our proposed finite element method in consideration of nonlinear hysteresis 

Figure 6: Comparison of the velocity between 
calculated and experimental data [3] 

 
 

Figure 7: Comparison of the acceleration between 

calculated and experimental data [3] 
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using nonlinear complex springs.  

First, we check the calculated results of the 

reference forces. Fig.6 shows time histories of the 

measured and calculated velocities 
1v  at the corner 

cube on the levitated block. In Fig.7, the 

experimental and calculated accelerations 
1a at the 

corner cube are compared. Further, the 

experimental and calculated reference forces 
massF  

using 
1a  of the levitated block are shown in Fig.8. 

In these graphs, we set the origin of time when the 

levitated block starts to contact with the 

viscoelastic shock absorber connected with the S-

shaped structure. From these graphs in Figs.6-8, 

the calculated time histories agree well with the 

experimental ones for the velocities 
1v , 

accelerations 
1a  and the reference force 

massF . 

Therefore, the validity of our proposed FEM is 

confirmed to compute the reference force in the 

impact response of the viscoelastic shock absorber. 

Further, we compute and investigate dynamic 

errors of the S-shaped force transducer. Fujii point 

out in the previous paper
 
[3] that there exists a 

relation of 
22aMF   for the dynamic errors F  

in the measured force of the transducer. 
2a is the 

Figure 8: Comparison of the reference force 
between calculated and experimental 
data [3] 

 

Figure 9: Comparison of the accelerations at the S-
shaped structure between calculated and 
experimental data [3] 

Figure 10: Elastic mode of the S-shaped 
structure in z-direction 

Figure 11: Elastic mode of the nonlinear complex 
spring in z-direction 
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signal of the acceleration from the accelerometer 

fixed on the S-shaped structure, while 
2M  is the 

half of the mass for the S-shaped structure in the 

transducer. From this viewpoint, we also compute 

the acceleration 
2a on the S-shaped structure in 

the transducer to clarify the dynamic errors. As 

shown in Fig.9 (a), the experimental acceleration 

2a of the S-shaped structure in the transducer is 

much different qualitatively from the acceleration 

a  at the levitated block shown in the Fig.7 (a). 

There exist high frequency components in the 

waveform of the acceleration 
2a  in the transducer. 

Therefore, to clarify dynamic errors of the force transducer, we try to investigate what happens in this system. 

The corresponding calculated time history of the acceleration 
2a  in the transducer is shown in Fig.9 (b). In 

comparison with the experimental data in Fig.9 (a), both time histories agree well. We can confirm that our 

proposed FEM in consideration of nonlinear complex springs is valid. We can recognize that there are 

typical periods in the accelerations 
2a  at the S-shaped structure in the force transducer. We can find a short 

period 0.0025(S) in the waveform. This corresponds to the eigen frequency of the elastic mode for the S-

shaped structure of the transducer in z-direction. The deformation in this eigenmode is shown in Fig.10. 

From this figure, the half portion of the S-shaped structure deforms. Another half portion never moves. This 

implies that the dynamic motion of the half portion for the S-shaped structure is dominant. We can regard 

that the correction force 
22aMF   using the half mass 

2M of the S-shaped structure is reasonable. In Fig.9, 

a long period 0.013 (s) is also found. We can find out an internal resonance due to the nonlinearity of the 

viscoelastic shock absorber in this period. This long period has a relation with the superharmonic component 

of order seven for the rigid translation of the levitated block in the z-direction as shown in Fig.11. Moreover, 

Figure 12:  Comparison of the velocities at the S-
shaped structure between calculated 
and experimental data [3] 

Figure 13: Resonant frequencies and Modal loss factors of elastic modes of the levitated block 
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this is related with the subharmonic component of order 1/7 for the elastic mode of the S-shaped structure in 

Fig.10. 

We also check velocities at the S-shaped structure in Fig.12. The calculated velocity is consistent with the 

experimental one. 

 

 Numerical analysis to confirm accuracy of the reference force using 

LMM 

In this section, by evaluating measurement errors due to undesirable motions or deformation of the 

levitated block, we check the accuracy [7] of the reference force using the Levitation Mass Method. Elastic 

eigenmodes of the levitated block are shown in Fig.13. If these modes are generated when the levitated block 

is collided with the viscoelastic shock absorber with the S-shaped force transducer, measurement errors of 

the reference force increase. To check these errors, we consider the consistency between the displacement 

gD  at the center of gravity of the levitated block and the displacement 
cD at the corner cube. As a result, the 

ratio 00.1110.99974173/ gc DD  is obtained at t=0.00704 [sec]. Note that the displacements reach the local 

maximal value at t=0.00704 [sec]. From this ratio, the undesirable dynamic motions and deformations of the 

levitated block can be regarded as enough small. Thus, the reference force as shown in Fig.8 includes enough 

small measurement errors due to the undesirable behaviours of the levitated block. 

 

 Conclusion 

This paper deals with numerical analysis of impact responses for a viscoelastic shock absorber connected 

with an elastic structure (an S-shaped structure) using a fast finite element method proposed by Yamaguchi. 

In this analysis, the viscoelastic absorber is modelled by using a nonlinear complex spring. The restoring 

force of the spring is expressed as power series of its elongation (e.g. relative displacement between the ends 

of the complex nonlinear spring). The restoring force also includes nonlinear hysteresis damping. Therefore, 

complex spring constants are introduced for not only the linear component but also nonlinear components of 

the restoring force. Finite element for the nonlinear complex spring is expressed and is connected to an 

elastic structure modelled by linear solid finite elements. The discrete equations of this system in physical 

coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate 

corresponding to linear natural modes. The transformed equations are integrated numerically in extremely 

small degree-of-freedom. In this paper, we apply our proposed FEM to examine dynamic errors in an S-

shaped force transducer when transient responses of a viscoelastic shock absorber are measured. The 

transient responses are obtained when a levitated block is collided with the absorber. The elastic structures in 

this study are the levitated block and the S-shaped structure, which is a part of the force transducer. These are 

expressed by using linear solid finite elements. The viscoelastic shock absorber is modelled by using the 

complex nonlinear spring. The nonlinear complex spring is attached between the levitated block and the s-

shaped structure. To check the dynamic errors in the transducer, the reference force is also measured using 

Levitation Mass Method proposed by Fujii. In this method, the block is levitated by a pneumatic bearing. A 

corner cube is fabricated on the block to receive a laser beam from an interferometer. The velocity of the 

levitated block is measured using the interferometer. The experimental dynamic errors are well simulated 

with the calculated ones from our proposed FEM. We find out that the dynamic errors are due to nonlinear 

dynamic responses of the eigenmode of the S-shaped structure. 
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