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Abstract
The vibration signal of a gearbox carries important information which can be used in early damage detection
and fault diagnosis, however this signal is usually noisy and the information about the fault in the early stage
of its development can be lost. Ensemble Empirical Mode Decomposition (EEMD) is a new method and a
powerful tool in signal processing. In this paper, a de-noising technique based on ensemble empirical mode
decomposition and fast Fourier transform (FFT) is used to post processing the noisy vibration signal taken
from a test bench. Firstly, the signal is decomposed into a number of IMFs using the EEMD decomposition.
Secondly, the denoising method based on the thersholding of Donoho and FFT is applied to IMFs to remove the
noise. To detect the damage at an early stage a statistical method based on Kurtosis is used. The different stages
of the technique, which is named (DEEMDFFT), are introduced in detail. The results given by this technique
are compared to those given by wavelet transform (WT) by using simulated and experimental signals.

1 Introduction

Vibration signals are widely used in rotating machines faults diagnosis and precisely in gearboxes fault
detection. These signals carry important information which is very useful in early detection of defect [1],[2].
Many techniques have been proposed for processing vibration signals [3]-[8]. The time-frequency analysis
methods can provide both time and frequency information of signal [9]. Particularly the Short Time Fourier
Transform (STFT) [6], Wigner-Ville distribution (WVD) [5] and Wavelet Transform (WT) [7] are widely used
in gearbox diagnosis. However, these techniques present some limits and drawbacks. The STFT is appropriate
to analyzing the signals with slowly varying [9] and it is inefficient for the analysis of non-stationary signals
such the gearbox vibration signals. The WVD method suffers from the cross terms as by indicated the ex-
istence of negative energy for some frequency ranges and from the aliasing problem [9]. The use of pseudo
WVD eliminates negative power and therefore also the aliasing problem. However, the results obtained with
pseudo WVD can be difficult to interpret [10]. The limitations of STFT and WVD can be overcome by using
the WT [11]. However the main drawback of the WT is the difficulty of choosing wavelet base function and the
number of levels [7], [12]. To avoid the disadvantage of the choice of wavelet basis function, empirical mode
decomposition (EMD) was originally proposed by Huang et al. [13]-[14] for nonlinear and non-stationary sig-
nals and was recently applied in fault diagnosis of rotating machinery [12], [15]-[17]. The EMD does not use a
priori determined basis functions and can iteratively decompose a complex signal into a finite number of intrin-
sic mode functions (IMFs). Each resulting elementary component IMF can represent the local characteristic
of the signal. However, EMD method cannot sometimes reveal the signal characteristics correctly due to the
mode mixing effect [18]. Mode mixing shows that oscillations of different time scales reside in a given IMF
or oscillation of the same time scale exits in different IMFs. To prevent the problem of mode mixing in EMD,
the ensemble empirical mode decomposition (EEMD) was used recently [19]-[20]. The principle of the EEMD
is based on the addition of the white noise in the signal with many trials. The noise in each trial is different.
The EEMD method defines the IMF components as the mean of an ensemble of trials. On the other hand,
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the measured signal is contaminated by noise, which can be generated by different sources, as the hardware
employed during data collection. Then the presence of noise may increase the amplitude noise used by EEMD
which increases the EEMD error and decreases the accuracy of the IMFs. In that case, the use of this technique
alone may display low sensitivity to faults detection, precisely in the early stage of their development [20]. In
this work, we present a new method to denoise the vibration signals by the EEMD in purpose to analyze the
gearbox data. Firstly, the gearbox signal is decomposed into a collection of IMFs by the EEMD, next, the coef-
ficient of correlation (coefcor) between the signal and each IMF is calculated, the IMF which the coefcor is less
than 0.1 was eliminated because it considered as a noise, after that, a de-noising method based on thersholding
[21] and FFT are applied to de-noise the noisy IMFs. Finally, the signal is reconstructed using the denoised
IMFs. The main advantages of this procedure are that no artificialinformation is introduced into the de-noised
signal and the IMFs are independently threshold. The results obtained by this method are compared to those
obtained by using wavelets. In this paper we have also used Kurtosis as indicator to extract periodic impulses
due to defects. Simulation signal was initially used to evaluate the performance of this new de-noising method.
Experimental results show that the noise contaminating the gearbox signal was considerably removed and the
defect has been detected at very early stage compared to the results given in the literature. The structure of
the paper is as follows: section 2 introduces the basic of EMD and EEMD methods. Section 3 presents the
procedure of the denoising method based on EEMD. In section 4, we present a simulated signal to illustrate
the behavior of the algorithm proposed then in section 5 the method is applied for gearbox faults diagnosis. In
section 6, a conclusion of this paper is given.

2 EMD and EEMD Algorithms

2.1 EMD algorithm

The EMD consists to decompose iteratively a complex signal into a finite number of intrinsic mode func-
tions (IMFs) which verify the two following conditions:

1. the number of extrema and the number of zeros of an IMF must be equal or differ at most by one,

2. an IMF must be symmetric with respect to local zero mean.

For a given signal x(t) the EMD algorithm used in this study is summarised as follows [13]-[14]:

1. Identify the local maxima and minima of the signal x(t)

2. Generate the upper xup(t) and lower envelops xlow(t) of x(t) by the cubic spline interpolation of the all
local maxima and the all local minima.

3. Average the upper and lower envelops of x(t) to obtain the local mean function:

m(t) =
xup(t)+ xlow(t)

2
(1)

4. Calculate the difference
d(t) = x(t)−m(t) (2)

If d(t) verifies the above two conditions, then it is an IMF

5. replace x(t) with the residual r(t) = x(t)−d(t) otherwise, replace x(t) with d(t)

Repeat steps (1)-(5) until the residual satisfies the criterion of a monotonic function. At the end of this
algorithm, the signal can be expressed as:

x (t) =
N

∑
n=1

cn(t)+ rN(t) (3)

where cn(t) are IMFs, N is the number of IMFs extracted named and rN(t) is the final residue.
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2.2 EEMD algorithm

To alleviate the mode mixing effect of EMD, the EEMD was used. The EEMD decomposition algorithm
of the original signal used in this work is summarised in the following steps [19]:

1. Add a white noise with given amplitude to the original signal to generate a new signal:

xk(t) = x(t)+βkn(t) (4)

2. Use the EMD to decompose the generated signals xk(t) into N IMFs

cnk(t), n = 1, · · · ,N (5)

where cnk(t) is the nth IMF of the kth trial.

3. Repeat steps (1) and (2) K times with different white noise series each time to obtain an ensemble of
IMFs:

cnk(t), k = 1, · · · ,K (6)

4. Determine the ensemble mean of the K trials for each IMF as the final result:

cn(t) = lim
K→∞

1
K

K

∑
k=1

cnk(t),n = 1, · · · ,N (7)

The relationship among the amplitude of the added white noise and the number of ensemble trials is
given by [19]:

δk =
βk√

K
(8)

where K is the number of ensemble trials, is the amplitude of the added noise and is the corresponding
IMF(s). The results given by EEMD are strongly influenced by the choice of the sampling frequency
[22].

3 Fourier Transform Threshold de-noising

Let y(t) be a clean signal corrupted by an additive white Gaussian noise b(t) as follows:

x(t) = y(t)+b(t) (9)

The aim of denoising technique is to recover an approximation ỹ(t) as closely as possible to the original clean
signal y(t) in order to eliminate noise components. The most famous denoising approach is wavelet thresh-
olding, the fundamental reasoning of wavelet thresholding is to set to zero all the components that are lower
than a threshold related to the noise level, and then reconstruct the denoised signal utilizing the high-amplitude
components only. The three steps of de-noising used to denoise a signal using FFT are:

1. Apply fast Fourier transform (FFT) to noisy signal,

2. Revise the FFT coefficients with the threshold operator,

3. Perform inverse fast Fourier transform (IFFT) to obtain the denoised signal.

By using EEMD the noisy signal is expressed as:

x (t) =
N

∑
n=1

cn(t)+ rN(t) (10)

The extracted IMFs include the noise since each IMF, indexed by n, can be approximated as follows:

cn (t) = ccn (t)+bn(t) (11)
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where: ccn(t) : is the noiseless IMF. When we applied the FFT to each IMF we get Cni coefficients and the two
classical thresholding functions hard thresholding and soft thresholding can be used. The hard thresholding
estimator can be expressed as:

Cninew =

{
Cniold i f |Cni|> T H

0 i f |Cni| ≤ T H
(12)

The soft thresholding estimator decreases the amplitude of all noisy coefficients. The soft thresholding function
is can be expressed as:

Cninew =

{
sign (Cniold) (|Cniold −T H|) i f |Cni|> T H

0 i f |Cni| ≤ T H
(13)

Donoho [21]gave the uniform threshold in equation (14) that can be applied in the hard and soft thresholding:

TH = σ
√

2 log(l)/l (14)

In this study l is the length of the IMF, and σ : is the noise variance and can be estimated by

σ̃ = MAD/0.6754 (15)

MAD is the median of the absolute deviation value. The main purpose of de-noising step is to suppress the com-
ponent representing noise and to regain the cc̃ as the estimate of the noiseless IMF. And finally, the estimated
signal,ỹ(t) is given by :

ỹ(t) =
N

∑
n=1

cc̃n(t)+ rN(t) (16)

Figure 1: Diagram of EEMD FFT denoising.
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4 Simulation

Consider a signal , which involves two sin components of 50Hz and 100Hz, as defined below:

y (t) = sin(2π.120.t) + sin(2π.50.t) (17)

Fig.2 shows the multicomponent signal. By using the EEMD, the signal is decomposed into two IMFs and a
residue. Fig.3 gives the signal IMFs and the residue. The first IMF illustrates the harmonic components of sin
of 120Hz, and the second IMF illustrates the harmonic components of sin of 50Hz, the residue is nearly zero
vectors. In practice, it is sure that noise will be introduced into the vibration signal. If we take the same signal
and introduced a white noise Fig.4.

x (t) = sin(2π.120.t) + sin(2π.50.t)+noise(t) (18)

The EEMD results of x(t) are shown in Fig.5, the figure demonstrates that the signal is over decomposes
because the noise introduce some false local extrema and the sampling frequency is 20000Hz, we have taken a
very large sampling frequency to get many IMFs which represent only the noise. Table.1 gives the coefficients
of correlation between the signal and each IMF. The first three IMFs were eliminated because their coefficients
of correlation are less than 0.1. In order to remove the noise from the IMFs, we have applied two different
methods, the first method is the de-noised method based on FFT (Fig.6) and the second method is based on
wavelet transform (WT), and we have compared between results given by the two methods (Fig.7), we can see
clearly that FFT gives best results. Fig.8 shows the zoom of the de-noised signal given in figure 7 . In order to
control the error and the level of noise, we have calculated the mean square error (MSE) between the noiseless
signal and the denoised signal and the values of signal to noise ratio (SNR) after denoising. The results given
by DEEMDFFT method were compared to the results given by WT (Table.2 ). MSE is given by :

MSE =

√
∑(ỹ(t)− y(t))2

/
T (19)

The SNR before denoising is given by:

SNR = 10log
∑
i

y2
i

∑
i

b2
i

(20)

The SNR after denoising is given by:

SNR = 10log
∑
i

y2
i

∑
i
(yi − ỹi)

2 (21)

where,y(t) : is the noiseless signal, ỹ(t): is the denoised signal and b(t): is the noise.

IMF1 IMF2 IMF3 IMF4 IMF5 Res
0.056 0.035 0.53 0.77 0.71 0.16

Table 1: Coefficient of correlation (x(t), IMFs)

SNR (dB) before denoising Denoised signal (WT) Denoised signal (EEMDFFT)
SNR(dB) MSE SNR(dB) MSE

20 28.58 4.15 29.22 3.58
10 20.88 24.45 21.62 20.65
5 15 99.5 17.92 48.39

Table 2: Comparison between wavelets and the proposed method
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Figure 2: The simulated signal(noisless), a) the time domain, b) the spectrum.
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Figure 3: EEMD decomposition of the simulated signal.

5 Application to experimental data

The vibration signals used in this work were carried out at CETIM, France [23]. The system under test is
composed of a pair of spur gears which have a number of teeth respectively Z1 = 20 teeth and Z2 = 21 teeth,
the 20 teeth gear has a rotation speed of 1000 rpm. The experiment was carried out for 13days length and the
measurements were collected every 24h, on the last day the fault was in an advanced stage close to the breakage
of the tooth. The rotating speed of the input shaft is : f r1= 16.67 Hz and the rotating speed of the output shaft is
f r2 = 15.87 Hz the meshing frequency is f e = Z1. f r1 = Z2. f r2 then it is f e = 333 Hz, Fig.9 shows the accel-
eration signals in time domain; they correspond to five days of the experiment ”2ndday,6thday,9thday,11thday
and 13thday”. The time trend of the vibration signals corresponding to 2ndday,6thday,9thdayand11th day indi-
cate that it is not possible to detect the fault of the gear only by looking at the time trend plot since impulses due
to faults are masked by the noise. For the vibration signals corresponding to the last day 13th, we can see that
the fault is characterized by periodical impulses caused by cracked teeth. Then the fault is in advanced stage.
Table. 3 gives the expert report, we note that for the first day there is no acquisition of data. Our purpose is to
identify the fault from the collected vibration signals before the tooth was broken. In this section, first we have
calculated the kurtosis values for acceleration signals from day 2 to 13, and then each signal was decomposed
by the EEMD method, we have obtained 12 IMFs which are reduced to (4 or 5) IMFs, because we have taken
only the IMFs of which their coefficient of correlation with the signal is greater than 0.1, (Figure.10 and Fig-
ure.11) show the EEMD results for 2nd day and last day. Then, every IMF was decomposed using Fast Fourier
Transform (FFT), and the soft thersholding method was applied to select the highest FFT coefficients, these
coefficients are used in IMF reconstruction, and finally we have obtained the denoised signal by adding the
different denoised IMFs. Fig.12 shows the time domain of the IMF1 and the denoised IMF1 which correspond
to the signal of the last day. To display the difference between the raw signals and the de-noised signals using
DEEMDFFT method and as the Kurtosis (Ku) is an indicator used for the detection of the impulses, the kurtosis

6



0 0.05 0.1 0.15
−3

−2

−1

0

1

2

3

Time(s)

Figure 4: The noisy simulated signal.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.2

0
0.2

IM
F

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.1

0
0.1

IM
F

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.5

0
0.5

IM
F

3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−2

0
2

IM
F

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−1
0
1

IM
F

5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.05

0
0.05

re
s

Figure 5: EEMD decomposition of the noisy signal.

values were calculated from day 2 to day 13 (table 4), for the raw signals and for the de-noised signals based
on (DEEMDFFT) method.

Day Observations Day Observations
2 First day of acquisition, not of anomaly 8 No evolution tooth 1/2 no evolution
3 No anomaly 9 Tooth 1/2 no evolution , Tooth 15/16 beginning of chipping
4 //// 10 Evolution of chipping tooth 15/16
5 //// 11 ////
6 //// 12 ////
7 Chipping tooth 1/2 13 Chipping over all the width of tooth 15/16

Table 3: Expert report

6 Discussion and conclusion

Fig.13 shows clearly that the Kurtosis values of raw signals increase rapidly after day 11, which indicates
development of the fault, but before that the variation of the Kurtosis values are arbitraries Fig.14. However,
the Kurtosis values of the de-noised signals starts increasing in a uniform way from the seventh day which
indicates that the fault appears on gear from the seventh day.The results presented in this study demonstrate
that the combination method of EEMD and denoising based on FFT can be used to identify early damage
in gear boxes. We note that the proper choice of the thersholding parameters in the post processing stage is
important. Numerical results prove that the de-noising method (DEEMDFFT) can increase the precision of
results given by the two methods EEMD and denoising based on FFT. This method is very simple, does not
require any choice of wavelet or the scale and it is capable of reducing noise and preserving signal information.
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Figure 6: The denoised IMFs using the denoising algorithm based on FFT.
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Figure 7: The denoised simulated signal using DEEMDFFT and WT.

References

[1] G. Dalpiaz, A.Rivola, R.Rubini, Effectiveness and sensitivity of vibration processing techniques for local
fault detection in gears, Mechanical Systems and Signal Processing, Vol. 14, No. 3, (2000), pp. 387-412.

[2] C. M.Harris , A.G.Piersol, Harris shock and vibration handbook, in Mcgraw-Hill, editor, 5th ed., (2002) .

[3] P.D.McFadden, Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vi-
bration, Transaction of the ASME, Journal of Vibration , Acoustics, stress and Reability, in design vol.108,
(1986), pp.165-170.

[4] R.B.Randall, Cepstrum analysis and gearbox fault detection, Technical Report 13-150, Bruel Kjaer Tech-
nical Review, (1981), Denmark.

[5] B.D.Forrester, Use of Wigner Ville distribution in helicopter transmission fault detection, in iProc of the
Australian, symposium on Signal Processing and Applications, ASSPA89, Adelaide, Australia, 17-19.
April 1989, pp.77-82.

[6] W. J.Staszewski, Local tooth fault detection in gear boxes using a moving window procedure, Mechanical
Systems and Signal Processing, Vol 11, No3, (1997), pp.331-350.

[7] W.J.Wang , P.D. Mcfadden, Application of orthogonal wavelet to early gear damage detection, Mechanical
Systems and Signal Processing, 9(5),(1997) pp.497-507.

[8] C.Capdessus, M.Sidahmed, Cyclostationary processes application in gear faults early diagnosis, Mechan-
ical Systems and Signal Processing, 14(3),(2000), pp. 371-685.

[9] L.Cohen, Time-frequency distributions a review, Proceedings of the IEEE 77 (7), (1989), pp.941-981.

[10] G. Svend, K.G.Hansen, The analysis of nonstationary signals, Journal of Sound and Vibration,(1997),
pp.40-46.

8



0.08 0.082 0.084 0.086 0.088 0.09 0.092
−1

−0.5

0

0.5

1

1.5

Time(s)

 

 

denoised signal with EEMD−FFT
denoised signal with WT
noisless signal

Figure 8: The zoom of Fig.7.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.5

0

0.5

2n
d 

da
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.5

0

0.5

6t
h 

da
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.5

0

0.5

9t
h 

da
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.5

0

0.5

11
th

 d
ay

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

0

1

Time(s)

13
th

 d
ay

Figure 9: The acceleration signals in time domain.

[11] I.Daubechies, Ten lectures on wavelets , Philadelphia, society for industrial and applied Mathematics
(SIAM) 1992. 357 p. ISBN 0898712742.

[12] S.J.Loutridis, Damage detection in gear systems using empirical mode decomposition, Engineering Struc-
tures vol. 26, pp.1833-1841.

[13] N. E. Huang, Z Shen, . and S. R. Long, (1998). The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis, in: Proceedings of the Royal Society of
London Series, 454, pp. 903-995.

[14] N. E. Huang, Z.Shen, and S. R. Long, (1999). A new view of nonlinear water waves: the Hilbert spectrum,
Annual Review of Fluid Mechanics , vol 31, pp. 417-457.

[15] J.S.Cheng, D.J.Yu, J.S. Tang, (2008). Application of frequency family separation method based upon EMD
and local Hilbert energy spectrum method to gear fault diagnosis, Mechanism and Machine Theory, vol
43, pp.712-723.

[16] Liu, B. Riemenschneider, S. and Xub, Y. (2005). Gearbox fault diagnosis using empirical mode decom-
position and Hilbert spectrum, Mechanical Systems and Signal Processing 17(9), p. 1-17

[17] Gao, Q., Duan, C., Fan, H., Meng, Q. (2008). Rotating machine fault diagnosis using empirical mode
decomposition, Mechanical Systems and Signal Processing (22) p.1072-1081.

[18] N.E.Huang, M.L.Wu, and S. R. Long, (2003). A confidence limit for the empirical mode decomposition
and Hilbert spectral analysis, Proceedings of the Royal Society of London (459) pp.2317-2345.

[19] Z.Wu , N.E.Huang, (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis
method, advances in adaptive data analysis, vol. 1, no. 1, pp.1-41 c world scientific publishing company.

9



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.2

0

0.2

IM
F

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.5

0

0.5

IM
F

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.2

0

0.2

IM
F

3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.1

0

0.1

Time(s)

IM
F

4

Figure 10: EEMD of signal of second day.
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Figure 13: Kurtosis value of the acceleration signal from day 2 to day11 before and after de-noising.
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Figure 14: Kurtosis value of the acceleration signal from day 2 to day11 before and after de-noising (Zoomed).

Day 2 3 4 5 6 7
Ku (Raw signal) 2.73 2.68 2.96 2.77 3.08 2.98

Ku (denoised signal ) (DEEMDWT) 2.65 2.90 2.83 2.94 2.98 2.90
Day 8 9 10 11 12 13

Ku (Raw signal) 2.97 2.87 3.16 3.11 12.64 13.44
Ku (denoised signal ) (DEEMDWT) 3.01 3.05 3.31 3.43 14.78 16.69

Table 4: Kurtosis values of the raw signals and denoised signals using DEEMDFFT.
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