
Fault detection in induction motors
based on artificial intelligence

Vinicius A. D. Silva1 and Robson Pederiva2

1Federal University of São João del Rei
Pça Frei Orlando, 170 - Centro, 36307-352, São João del Rei - MG, Brazil.

2University of Campinas
Postal Code 6051, Campinas - SP, 13083-970, Brazil.

viniciusadsilva@ufsj.edu.br, robson@fem.unicamp.br

Abstract
Electric motors are essential components in most industrial processes. The various faults in induction machines
can result in drastic consequences for an industrial process. The main problems are related to rising costs,
worsening conditions in the process, and safety and quality of the final product. Many of these faults appear to
be progressive. This work presents a contribution to the study of fault detection methods in electrical motors
using Support Vector Machines (SVMs), trained by experimentally obtained vibration signals. The developed
methodology is used to classify the excitation resulting from mechanical and electrical faults, in addition to
normal operating condition. Through a selection of parameters, it is possible to reduce the number of entries
able to represent the signals used for the SVMs training. The SVM procedure was compared with other two
artificial intelligence techniques, the Fuzzy Logic (FL) and Artificial Neural Network (ANN). For the FL were
created 43 rules and for ANN was evaluated three different architectures. Results showed that SVM has a good
generalization, and requires less user knowledge for its application in comparison to FL and ANN.

1 Introduction

Electric motors are components present in many industrial processes, owing to their strength, mechanical
simplicity, and adaptability to a variety of applications in the industry [1, 2, 3, 4].

With the high productivity levels at industrial plants, any unscheduled shutdown due to failure (unplanned
corrective maintenance) can be very disruptive to the production process. In industries like nuclear power and
petrochemical, techniques able to detect the fault’s early onset could avoid more serious problems. In this sense,
there are many studies focused on early fault detection. In this manner, over the past 30 years, several artificial
intelligence techniques have been developed and applied in the monitoring processes of faults, among them,
the Artificial Neural Networks (ANNs), Fuzzy Logic (FL) and Support Vector Machines (SVM) [5, 6, 7, 8].

Regarding the neural networks, it is important to note that the ANNs can be considered as “black boxes”;
since they provide little explanation regarding the prediction and the fault detection processes [9]. Furthermore,
the artificial neural networks are not portioned with training algorithms that maximize the generalization in a
systematic manner, which can lead to overfitting the model over the data points [10].

Conversely, it is possible to implement early fault detection in fuzzy logic systems, and to interpret and
analyze their results with a good theoretical basis. However, fuzzy logic presents some difficulties with its rule
definitions, and its input data processing [9]. This feature requires an expert to create the respective rules.

Recently, support vector machines, are gaining more applications in the fault detection area because of its
high success rate, and good generalization capability [11].

It is known that different methods for induction motor fault diagnosis were proposed, but in these studies,
in general it is necessary different signals from different sensors to detect and differentiate mechanical and
electrical faults. Kolla and Altman [6], train the ANN with voltage and current signals to detect faults in
induction motors. Experimental tests achieved good results, but only electrical faults have been analyzed.
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In other hand Baccarini et al. [1], used the SVM together with vibration signals to detect mechanical faults
in induction motors. However, the electrical faults were not included, since this type of failure is typically
detected using other sensor signals as current, voltage and flux.

In order to evaluate the research related to fault detection through support vector machines, Widodo and
Yang [12] presented a survey of fault detection in machines using SVM; thus, concluding that support vector
machines techniques are the most promising for fault diagnosis. They concluded also that more incentive and
attention would be necessary as for the scarcity of works focused on the research for this concept’s applications
in the monitoring of the equipment’s conditions and faults diagnosis.

Usually, Fuzzy Logic and ANN techniques, as SVM are trained using a database correlating measurement
and corresponding fault. In practical application, the level of severity of faults may vary and not exactly match
the database used for training. This can lead to false diagnosis.

This paper presents an artificial intelligence practical application for the detection, and diagnosis of me-
chanical and electrical faults in three phase induction motors. This study proposes a methodology to detect
mechanical and electrical faults using only one accelerometer sensor for measuring vibration, under conditions
of different levels of fault severity, by the use of a normalization process to improve the SVM accuracy rate.

2 Vibration Analysis and Fault Detection

Normally the vibration analysis is based on the assumption that faults can be detected by analyzing fre-
quency characteristics. All faults cause a specific alteration of the frequency spectrum, compared to the normal
operating condition.

Vibration analysis has been one of the most widely used techniques for fault detection and diagnosis,
because of its potential, e.g., ease of use, relative low cost, non-intrusive technique, among others. The spectrum
analysis of the vibration’s signal can detect both mechanical and electrical failures.

However, analyzing the vibration in electric motors is not an easy task, since the vibration generated is
the result of mechanical and magnetic forces interacting with its structure. Thus, the analysis of vibration
is a problem that requires multidisciplinary knowledge, e.g., information about the dynamic signals of inter-
est, modulation, conditioning, special tools for the diagnosis of faults and for the most important parameters
choices.

There are various techniques to detect specific type of faults (e.g., analysis of current for electrical prob-
lems); however, the ability to detect a greater number of different faults with the same technique, would imply
in costs reduction and process optimization.

For the detection of electrical faults with traditional techniques of predictive maintenance, it is necessary
to remove the operation motor, for inter-turn short-circuit and broken bars testing. The phase unbalance detec-
tion requires access to power cables, which in the majority of cases are not easy available for measurements;
consequently, a highly dangerous job for the operator.

Therefore, we use a single acceleration sensor for detecting mechanical and electrical faults. Following are
some of the major mechanical faults: unbalance, misalignment, mechanical looseness, and among the electrical
faults are inter-turn short circuit, phase unbalance, and broken bars.

2.1 Induction motor faults

The rotor unbalance is undoubtedly the major cause of vibrations in rotating machinery. This phenomenon
is characterized by the presence of unbalanced mass in relation to the axes of rotation. The resulting vibration
is predominantly radial, a strong component in the frequency of rotation (1× fr) [13].

The misalignment is almost as common as the unbalance. The mechanical assemblies, usually has multiple
shafts, bearings and couplings with different dynamic characteristics. In the misalignment, the vibration is
greater in the radial direction, with strong components in harmonics from the frequency of rotation (1× fr,
2× fr, 3× fr, 4× fr) [13].

The mechanical looseness is defined by the presence of multiple harmonics from the frequency of rotation
(1× fr), and it generates vibration in rotating machines due to loose screws, excessive clearances in the bearing,
among others. The dominant plan is the radial with higher harmonics as well as sub harmonics of 1× fr

(0.5× fr, 1.5× fr, 2.5× fr, etc..) [14].
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The insulation fault is typically caused by contamination of the winding, abrasion, vibration or voltage
surge. According to Nandi e Toliyat [15], the line’s 19th and 21st harmonics (1260 Hz) are always present when
there is a fault in the stator.

The phase unbalance or voltage unbalance is characterized by the existence of different voltage levels
between two phases. [16], showed that in the vibration spectrum, the line’s 2nd harmonic (120 Hz) is related to
the phase unbalance.

The break in the bars and the cold welds in the cage, are among the faults, frequent in the induction machines
rotors. The characteristic symptoms are abnormal vibration and noise. Brito e Pederiva [17] demonstrated that
in the spectrum of vibration, the detection of broken bars is made by taking into account 1× fr±2× s f , with
s f as the slip frequency of the electric motor.

3 Artificial Intelligence

3.1 Artificial Neural Network

The ANN tries to simulate the biological brain neural network in a mathematical model. It is a set simple
processing unit, connected to each other, with weights assigned to the connections. According to a learning
rule it is possible to modify these weights, so, the ANN can be trained to recognize a pattern given the training
data. There are several transfer functions such as tanh, sigmoid, etc. There are several kinds of neural network
structures proposed in the literature. The most used structure is the feed-forward network. There can be several
hidden layers in the network. The Figure 1 shows two hidden layer. In this network, the number of input nodes
and the number of output nodes are determined by the number of patterns to be identified. The number of nodes
in the hidden layer is selected for an application, generally using a trial and error method. The neural network
has to be trained so that it can identify the output patterns corresponding to the input pattern. There are several
kinds of training algorithms suggested in the literature. The back-propagation is one of the most popularly used
algorithms [6].
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Figure 1: Feed-forward neural network.

3.2 Fuzzy Logic

The concept of fuzzy logic was introduced by Zadeh [18] to present vagueness in linguistic terms and
express human knowledge in a natural way. With the FL is possible for control devices evaluate concepts
unquantifiable, as thermal sensation (hot, warm, cold, etc.). In other hand, the FL is an extension of Boolean
logic that admits intermediary values between, FALSE (0) and TRUE (1), e.g., MAYBE (0.5). That means, a
fuzzy value is any value in a range between 0 and 1.

In practice, a fuzzy system can get certain knowledge, which allows it to make decisions with a high percent
of accuracy. This knowledge expressed in rules and membership functions is obtained from the study, in this
case, of the induction motor, through engineer experience. From the point of view that sees induction motor
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condition as a fuzzy concept, there has been some fuzzy logic approaches for diagnosis [8]. The lack of proper
processing of fuzzy input data and the construction of the membership functions and rules, are presented as the
major difficulties.

3.3 Support Vector Machine

Since the SVM constitutes of a technique grounded by the statistical learning theory, developed by Vapnik
[19]. This theory establishes a series of principles to be followed in obtaining classifiers with good generaliza-
tion, defined as its ability to correctly predict a class of new data from the same domain in which the learning
occurred.

The task is to separate two classes by using a hyperplane induced from the training samples, producing a
good performance classifier with the non-observed samples during training, i.e., with good ability of general-
ization.

The optimal separating hyperplane, created by the SVM must have maximum margin [20], and its margins
define the points that will be called support vectors (SV). Figure 2, shows an example of a optimal separating
hyperplane and two sets of data.

Figure 2: Optimal separating hyperplane.

The function that represents the hyperplane is linear. However, when the data are not linearly separable,
the SVM map the input data in a space of higher dimension. When choosing a nonlinear mapping, a priori, the
SVM constructs an optimal separation hyperplane in the characteristics space, and the functions transitioning
from input to characteristics space are called kernel functions.

By introducing variables, the SVM widen the margin by relaxing its restrictions; thus, allowing for some
misclassifications at the margin, yet, penalizing those errors through penalty parameter.

3.3.1 Multiple classes

The SVMs were originally formulated for the solution of binary classification problems; however, many
classification problems have more than two classes.

The most direct way to generate multi-class classifiers from binary classification techniques is to decompose
the multi-class problem into binary sub-problems. The outputs of binary predictors, generated in the solution of
each of these sub-problems, are then combined to obtain the final classifier. The main decomposition methods
are “One-Against-All”, “One-Against-One”, and “All-Against-All”.

This article used the “one-against-one” method; even though, the “one-against-all” methodology is a good
one with comparable performance; however, the “one-against-one” has a shorter training period [21, 22, 23].
The “one-against-one” method consists of the construction of a SVM for each pair of classes. Thus, for a
problem with K classes, k(k−1)/2 SVMs are trained to differentiate the samples. Generally, the classification
of an unknown pattern is made according to the maximum voting, where each SVM votes for a class.
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4 Experimental set-up

The experimental set-up, Figure 3, was assembled at the Laboratory of Vibrations, School of Mechanical
Engineering - University of Campinas.

Figure 3: View of the experimental setup.

The faults were inserted in a three-phase motors {1}, squirrel cage rotor, 5 CV, 220V, 60Hz, category N, 44
bars, 36 slots, SKF 6205-2Z bearing, ID-1, frame 100L, class of insulation B.

A CC generator {4} feeding by the bank of resistance is used as a load system. Varying the excitement
current of the CC generator field, it is obtained, consequently, the variation of the motor load. The generator is
connected to the electric motor through flexible couplings {2}, and a torquimeter {3} that could guarantee the
same operating condition in all the accomplished tests.

Six hundreds and eighty vibration signals were randomly collected, which are distributed among the six
faults in the study. For the data collection, it employed the NI-6251 data acquisition device from National
Instruments. This plate contains 16 analog input channels that can be sampled at up to 200 kHz and two digital
counters of 24 bits each. The analog inputs have a resolution of 16 bits. The vibration signals were subjected
to an anti-aliasing filter with a 2 kHz cutoff frequency. The implementation of the data acquisition algorithm
used the MATLAB software.

The accelerometer was installed vertically on the electric motor coupled side. The signals were collected
at a sampling frequency of 5 kHz and 20480 points, to cover the whole frequency band in which the defects,
under study, are identified. It used a Hanning window and four averages were made in the signal from the
frequency domain. The signals were transformed to the frequency domain using the FFT algorithm. Prior to
testing, the bench was aligned, and balanced. Thus, it was possible to determine the motor-generator signature
count, which were stipulated as maximum of 0.5 mm/s amplitude of vibration (measured in RMS) according
to the VDI 2056 norm [24].

4.1 Faults Insertion

The unbalance was created by adding mass at different positions on a metal disk placed on the motor shaft.
Misalignments were created by installing additional shims of specific thickness in the motor’s base, to slightly
lift it above the coupling axis. The mechanical looseness was created by loosening the screws at the base of the
electric motor.

To simulate the low insulation among spirals from the same phase, four derivations were extracted in a coil.
Those derivations were disposed externally, and linked in series (two each time) with a resistance bank, of 1Ω,
100W (each one) connected in parallel, and added to the circuit in order to control the current intensity of the
inter-turn short circuit by approximately 10A, always staying the nominal load of the motor.

Each coil is constituted of 26 turns with the diameter wire equal to 16 AWG. As 6 coils form each phase;
therefore, the total of turns for each phase equals to 156.

Consequently, the configuration allows the low insulation analysis (short circuit) between, at least, two
turns and, at the maximum, 10 turns for the phase A, corresponding to the percentages of 1.2% (2/156) and
6.4% (10/156) of low insulation.
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The unbalanced phase excitement was obtained by inserting a changeable resistance in series with the
electric motor supplying one of the phases.

Lastly, the broken bars were simulated by drilling holes in the rotor bars, resulting in the breaking thereof.

4.2 Vibration signals selecting

This study uses the velocity values obtained from integration of accelerometer signal. From the velocity
spectrum, the deterministic frequencies that most represent the faults was chosen (see section 2.1). It is neces-
sary because data obtained from vibration spectrum analysis contain not only information about faults through
the deterministic frequencies, but also some other that can be neglected, like noise. A total of 680 input patterns
corresponding to different faults, as described in Table 1, were used.

Condition Number of patterns
No Fault 170
Unbalance 110
Misalignment 110
Mech. looseness 110
Short circuit 60
Phase unbalance 60
Broken bars 60

Table 1: Number of training patterns per fault.

The input parameters were defined as: 1, 2, 3 and 4× fr ( fr: frequency of rotation) for the detection of
mechanical faults; 2, 19 and 21× fl ( fl: line frequency) for inter-turn short-circuit and phase unbalance, and
1× fr±2× s f for the broken bars.

Figure 4 shows the vibration amplitude values in R3 space for the selected input frequencies. It can be
noticed that the sampled data are grouped and overlaid and thus, can not be linearly split.
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Figure 4: Pattern distribution for the data set.

4.3 Application of the SVMs

The RBF kernel (Radial Basis Function), conducted the SVM training. The RBF kernel was chosen because
it maps the samples into a dimensional space superior than the initial problem, which allows it to work in non-
linear situations, and it contains fewer hyperparameters that influence in the complexity of the model’s choice
[21].
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The RBF kernel contains two hyperparameters, the C and the γ , for which the user must define the entry
value. A wrong choice can lead to poor generalization of the classifier. To avoid this problem, the choices are
made automatically. For automatization of the C and γ , choices, there is a v-fold cross validation that divides
the training set in v subsets of equal size. Sequentially, a subset is tested using the trained classifier on the
other v−1 subsets. Thus, each instance of the completely trained set is predicted with greater accuracy by the
cross-validation. This step is important, since the cross-validation can prevent the overfitting [25].

Along with cross-validation, a grid-search is performed for the best values of C and γ . Several pairs of
(C,γ) are judged and the one with the best cross-validation accuracy is chosen. To try an exponential growth of
sequences C and γ is a practical method for the identification of the best parameters [25]. In the study, for both
the faults, it sought between the values of C = 2−5,2−4, . . . ,215 and for γ = 2−15,2−14, . . . ,23.

4.4 Application of the ANN

In the use of ANNs some parameters are chosen by the user. One critical decision is to determine the
appropriate architecture, that is, the number of layers, number of nodes in each layer [26].

Choose the best architecture by testing three different architectures topology. For the mechanical faults we
use 4x3x1, 4x5x1 and 4x10x1 (which represent input x hidden x output), and for the electrical faults we use
3x3x1, 3x5x1 and 3x10x1. Topology that showed better results was 4x5x1 for mechanical faults and 3x3x1 for
electrical faults [27].

The maximum error was kept below 0.5%, the learning rate, the momentum and the maximum number of
epochs, are assumed as 0.01, 0.9 and 1000, respectively, and the weights was initialized randomly. In input
and hidden layer neurons, we considered a sigmoidal activation function and output layer neurons use linear
function. We use an activation velocity of 0.001.

4.5 Application of the Fuzzy Logic

Different to SVM and ANN, for the fuzzy system we use as input variables: 1, 2 and 3× fr to detect
mechanical faults and for electrical faults we use as input variables: 2, 19 and 21× fl ( fl: line frequency)
for inter-turn short-circuit and phase unbalance, and 1× fr± 2× s f for the broken bars. The output variables
represent the different kind of faults, Unbalance (UB), Misalignment (MA), Mechanical Looseness (ML), Short
Circuit (SC), Phase Unbalance (PU) and Broken Bars (BB) and health condition (HC).

The amplitudes of the vibration signals (inputs) are categorised using three linguistic variables for mechan-
ical faults {Small (S), Medium (M) and High (H)} and two linguistic variables for electrical faults {Small (S)
and High (H)}. The induction motor condition (outputs) are categorised as No Fault (NF), Intermediate Level
(IL) and Critical Level (CL) for mechanical faults and categorised as No Fault (NF) and With Fault (WF) for
electrical faults.

The system was tested with triangular, trapezoidal and Gaussian membership functions. It was found that
the combination of Gaussian and triangular membership function is the most appropriated for fault diagnosis
of induction motors using as input vibration signals [27].

Figure 5 shows an example of input membership functions for mechanical faults detection. Figure 6 shows
the output membership functions for mechanical faults detection.
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(a) Mechanical faults

0 1

0

1
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Figure 5: Membership functions for the normalized vibration signal.
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Figure 6: Membership functions for the induction motor condition.

A fuzzy system can store certain knowledge, which allows it to make decisions with a high percent of
accuracy. This knowledge is expressed in rules. Rules connect the inputs with the outputs to take the decision
about the induction motors condition. Table 8 (mechanical faults) and Table 9 (electrical faults), (see section
7), shows the if-then rules. For example, interpreting Rule 1 from Table 8 we have: if 1× fr is S and 2× fr is
S and 3× fr is S then motor condition is NF for Unbalance, and NF for Misalignment end NF for Mechanical
looseness, that means, the induction motor is health.

5 Faults diagnosis

For the input parameters, were chosen the amplitudes of the frequencies described above. The sets of me-
chanical and electrical faults were mixed together (mechanical with mechanical and electrical with electrical),
and then partitioned in half. This process was conducted in triplicate; thus obtaining three subsets of training
and three subsets of validation with varied data, and identified as set 1 (s1), set 2 (s2) and set 3 (s3).

The training and validation process used each of the different sets created. This subsets division with
different data, aimed to verify the representativeness of the experimental data in relation to the faults inserted.

Table 2 and Table 3, shows the results of the Artificial Intelligence Techniques (AI) classification for both
the mechanical and electrical faults, and the normal operating condition, respectively.

Fault AI s1 Hit Rate (%) s2 Hit Rate (%) s3 Hit Rate (%)

No Fault
SVM 96.00 96.00 98.00
ANN 86.24 84.49 91.29
FL 100 100 100

Unbalance
SVM 96.00 96.00 92.00
ANN 90.80 86.97 83.35
FL 96.00 96.00 88.00

Misalignment
SVM 88.00 88.00 88.00
ANN 94.08 84.77 81.18
FL 84.00 84.00 88.00

Mech. looseness
SVM 80.00 80.00 84.00
ANN 74.65 70.72 60.43
FL 72.00 84.00 80.00

Table 2: Percentage of correct detection for mechanical faults.

By the analysis of the results on Tables 2 and 3, it is possible to observe that all methodologies achieved
satisfactory results. It is clear that there are differences in hit rate between the techniques. In general SVM
achieved best results comparing with ANN and FL, when taking into account the SVM has less parameters
that influence in percentage of correct detection, and it is easier to make a selection of these parameters auto-
matically, avoiding erroneous choices, which would hinder the SVM performance. However, ANN has many
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Fault AI s1 Hit Rate (%) s2 Hit Rate (%) s3 Hit Rate (%)

No Fault
SVM 100 100 100
ANN 95.11 90.93 92.93
FL 100 100 100

Short circuit
SVM 100 100 100
ANN 91.22 89.73 83.61
FL 100 100 100

Phase unbalance
SVM 77.78 100 100
ANN 94.90 95.47 94.94
FL 100 100 100

Broken bars
SVM 100 100 100
ANN 92.60 93.23 91.48
FL 88.89 83.33 77.78

Table 3: Percentage of correct detection for electrical faults.

parameters that can influence in percentage of correct detection, as architecture, and its automatic selection is
an active research field.

FL is a technique that provides excellent results, but it should be noted the difficulty of creating rules and
definition of the membership functions, which require much expert knowledge about the problem studied.

5.1 Fault levels

In practice, the machine may have different levels of vibration amplitude, which in turn can be classified in
accordance with the norms. According to the VDI 2056 [24], machines with up to 20 HP power are considered
without fail, when they have vibration levels up to 0.71 mm/s. They are regarded as level 1 (Permissible) when
vibration levels are between 0.71 and 1.80 mm/s; level 2 (Tolerable) when vibration levels are between 1.8 and
4.50 mm/s, and level 3 (Impermissible) when the vibration levels are higher than 4.50 mm/s.

This study considers only two levels of severity: level 1 with vibration amplitudes between 0.71 and 1.80
mm/s, and level 2 with vibration amplitudes above 1.80 mm/s.

In electrical source failures, the vibration levels are relatively low; thus, the use of VDI 2056 is impossible.
The levels were defined according to the intensity of the inserted faults. For the inter-turn short-circuit fault,
when inserting two turns short circuited, it was considered as level 1, i.e., a very early stage of fault, and
level 2 with ten turns short circuited. Ten is still a small number of turns short circuited, when compared with
the motor’s total number of turns; however, ten turns short circuited are more aggressive than two turns short
circuited ones.

For the unbalance phase fault, level 1 was considered when the two phases voltage were at 220V and the
third was at 210V and Level 2 when the two phases were at 220V and the third was at 200V. Lastly, level 1 had
three broken bars and level 2 had seven broken bars.

5.2 Classification of faults at different levels of severity

So far, it was demonstrated the AI use for the classification of faults; however, during the training and
verification phases, the severity levels of the input parameters fault remained the same (level 1). Nevertheless,
in real situations, the equipment has different levels of faults. If the AI technique is trained with a level 1 of
fault severity, it will not be able to correctly classify the same fault at level 2 of severity [27].

Thus, with the SVM and ANN model already trained to classify faults at level 1, it was decided to classify
the level 2 with the same model. For this step, the user trains its SVM or ANN with the available data, and
he will use it to classify the new data, except that this data is on another level. Table 4 and 5, shows the
classification for different levels of severity for the mechanical and electrical faults, respectively. Regarding FL
will be discussed later on.
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Fault AI s1 Hit Rate (%) s2 Hit Rate (%) s3 Hit Rate (%)

Unbalance
SVM 44.00 80.00 48.00
ANN 87.20 81.52 69.59

Misalignment
SVM 72.00 32.00 28.00
ANN 49.91 56.94 43.49

Mech. looseness
SVM 60.00 16.00 74.00
ANN 79.47 72.60 83.12

Table 4: Rating level 2 through the AI trained with the level 1 for mechanical faults.

Fault AI s1 Hit Rate (%) s2 Hit Rate (%) s3 Hit Rate (%)

Short circuit
SVM 66.67 77.78 88.89
ANN 91.80 83.01 89.31

Phase unbalance
SVM 00.00 00.00 22.22
ANN 97.48 95.26 97.66

Broken bars
SVM 00.00 11.11 44.44
ANN 83.91 97.33 97.81

Table 5: Rating level 2 through the AI trained with the level 1 for electrical faults.

It can be observed by Tables 4 and 5 that when we have a trained SVM to faults at a level of severity 1 and
ranks the same faults trained, but in another severity level the percentage of correct detection drop considerably
for both mechanical and electrical faults. The same can be said for classification of mechanical faults using
ANN, while for electrical faults the neural network was able to deal with this difference of levels.

When using faults on level 2 in fuzzy logic, the classification is not possible, therefore, membership func-
tions were created according to the amplitudes of the fault level 1. So to deal with classification problem with
more than one level of severity with fuzzy logic, must be recreated the membership functions.

5.3 Normalization

Due the low hit rates when training the SVM with a fault’s level 1 and ranking other levels, we propose a
normalization to deal with it.

The normalization consists of the following: for mechanical faults, normalize the amplitudes of harmonics
of two, three, and four times the frequency rotation in relation to the amplitude of one time the frequency of
rotation.

Regarding the electrical faults, for the inter-turn short-circuit fault, normalize the amplitudes of the harmon-
ics two and nineteen times the frequency of line in relation to an amplitude of twenty-one times the frequency
of line. For the unbalance phase fault, normalize the amplitudes of the harmonics of nineteen and twenty one
times the frequency of line in relation to amplitude twice the frequency of line. Lastly, for the broken bars faults
normalize the amplitudes of the sidebands of plus and minus two times the frequency of slip from the electric
motor in relation to the amplitude of one time the frequency of rotation.

With this procedure, it is possible, e.g., to train the SVM with a fault at level 1 of severity and classify a
fault on another level of severity, with better hit rates.

5.4 Ranking with the normalization

In this step, it was used a normalization proposal, to try to classify the fault at level 2 of severity, assuming
that only level 1 data is available for training. The process consists of normalizing the input data at level 1, and
then to train the SVM, followed by the normalization and ranking of the level 2 data.

Table 6, shows the SVM classification results for the mechanical faults with the normalization.
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Fault AI s1 Hit Rate (%) s2 Hit Rate (%) s3 Hit Rate (%)

Unbalance
SVM 100 100 100
ANN 77.53 85.40 85.60

Misalignment
SVM 100 100 100
ANN 81.97 85.32 72.40

Mech. looseness
SVM 72.00 76.00 92.00
ANN 47.97 73.13 33.62

Table 6: Ranking level 2 of severity with a SVM trained with the level 1 for mechanical faults with the normal-
ization.

Table 7, shows the SVM classification results for the electrical faults with the normalization.

Fault AI s1 Hit Rate (%) s2 Hit Rate (%) s3 Hit Rate (%)

Short circuit
SVM 100 100 100
ANN 91.92 98.83 99.85

Phase unbalance
SVM 88.89 88.89 100
ANN 90.72 98.08 89.26

Broken bars
SVM 100 100 100
ANN 90.59 99.63 99.83

Table 7: Ranking level 2 of severity with a SVM trained with the level 1 for electrical faults with the normal-
ization.

Regarding SVMs, normalization could deal with the problem of classification of other severity levels im-
proving hit rates for both mechanical failures and for electrical faults. ANNs were not influenced as much as the
SVM due to the different levels for training and classification. However, with the normalization was possible
to achieve better hit rates, but lower than those obtained with the SVM with normalized data.

Importantly, better results can be obtained by modifying the various parameters of the ANNs. However,
obtaining these best parameters is not as trivial as for SVMs. This choice of parameters to train the ANN is an
active research field.

6 Conclusion

This paper discussed the use of SVM, ANN and FL to detect and diagnose faults in induction motors from
mechanical failures (unbalance, misalignment and mechanical looseness) and electrical (inter-turn short circuit,
phase unbalance and broken bars) beyond the normal operating condition. It was observed through the vibration
spectra, that all tests demonstrated a good repeatability and without interference problems, ensuring a reliable
analysis of the results.

SVM showed a technique with very good results. In comparison with the ANN, the SVM is not dependent
on many parameters which influence the percentage of correct detections. On the other hand, although the LF
is a technique that produces excellent results, its use is strongly dependent on an expert who knows the process
to be analyzed.

The presented methodology allows the use of SVMs in practical applications, as a form of online monitoring
by an operator not very knowledgeable in analysis and fault detection. According to the adopted procedures, the
trained SVM was able to characterize both mechanical and electrical faults using only one sensor. The proposed
normalization proved efficient in the process of identifying faults of different severity levels, improving the hit
rates in relation to the standard training.
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Also noteworthy is that the development of experimental techniques of SVM, combined with traditional
predictive maintenance techniques allows automatization of the detection, and diagnosis of equipment’s faults.
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7 Appendix

7.1 Rules for Fuzzy Logic

Rules Inputs Outputs

1x fr 2x fr 3x fr Unbalance Misalignment Mechanical
Looseness

01 S S S NF NF NF
02 S S M NF NF NF
03 S S A NF CL NF
04 S M S NF IL NF
05 S M M NF IL NF
06 S M A NF CL NF
07 S A S NF CL NF
08 S A M NF CL NF
09 S A A NF CL NF
10 M S S IL NF NF
11 M S M IL IL NF
12 M S A IL CL NF
13 M M S NF NF CL
14 M M M NF NF CL
15 M M A NF CL CL
16 M A S NF CL NF
17 M A M NF CL NF
18 M A A NF CL NF
19 A S S CL NF NF
20 A S M CL IL NF
21 A S A CL CL NF
22 A M S CL IL NF
23 A M M CL IL IL
24 A M A CL CL NF
25 A A S CL CL NF
26 H H M CL CL IL
27 H H H CL CL CL

Table 8: Rules for mechanical faults.

NF - No Fault IL - Intermediate Level CL - Critical Level
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Rules Inputs Outputs

2x fl 19x fl 21x fl 1x fr−2xs f 1x fr 1x fr +2xs f
Short

Circuit

Phase
Unbal-
ance

Broken
Bars

01 S S S - - - NF NF -
02 S S H - - - WF NF -
03 S H S - - - NF NF -
04 S H H - - - WF NF -
05 H S S - - - NF WF -
06 H S H - - - WF WF -
07 H H S - - - NF WF -
08 H H H - - - WF WF -
09 - - - S S S - - NF
10 - - - S S H - - NF
11 - - - S H S - - NF
12 - - - S H H - - WF
13 - - - H S S - - NF
14 - - - H S H - - NF
15 - - - H H S - - WF
16 - - - H H H - - WF

Table 9: Rules for electrical faults.

NF - No Fault WF - With Fault
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