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Abstract
The estimation of the geometric properties of the elliptical trajectory followed by a three-component sinusoidal
signal in three-dimensional Euclidean space with the objective of system monitoring is addressed in this paper.
In system monitoring problems, multicomponent signals are frequently encountered. Most physical quantities
are naturally composed of three components. In this paper, a three-component sinusoidal signal is studied.
Three sinusoids of the same frequency follow a trajectory in the shape of an ellipse when plotted in three-
dimensional Euclidean space. It is the geometric properties of this elliptical trajectory that are estimated in this
paper. The geometric properties of interest are the norm of the position vector, the binormal vector, curvature
and torsion. Straightforward expressions of these quantities are given which allow the geometric properties
of the ellipse to be recovered from three-component data. Definition and interpretation of the expressions are
also included, followed by a step-by-step explanation of the approach used to estimate these quantities. The
performance and limitations of the method with respect to various parameters such as noise, frequency of the
sinusoids and ellipticity are discussed. The usefulness of this method as an informative means of describing
three-component sinusoidal signals is illustrated with two applications.

1 Introduction

Multicomponent signals are frequently encountered in system monitoring applications. Most physical quan-
tities are naturally composed of three components. Examples include three-dimensional displacements for
mechanical systems and, more artificially, three-phase electrical quantities for electrical systems. In order to
obtain efficient fault indicators, such three-component signals can be analyzed with the usual marginal and/or
joint analysis tools in the time domain (by using correlation functions and/or correlation matrices) as well as
in the frequency domain (spectra and/or spectral matrices) [1]. However, three-component signals also contain
another type of information which is completely different in nature: their geometric properties. The geomet-
ric nature and properties of the trajectory followed by such data in three-dimensional Euclidean space can be
related to the state of the system from which the data have been acquired. This approach has already been suc-
cessfully proposed in the field of system monitoring with two-component signals [2] by using complex-valued
signal processing tools [3]. It is the case for orbit shape analysis used to detect faults in rotating machines
[4, 5, 6], and for voltage dips detection and classification in power networks [7]. In this paper, this approach is
generalized to three-component signals by using basic differential geometry concepts such as the Frenet-Serret
frame and related geometric quantities.

The foundations of the proposed method are presented first. These include the definition of the three-
component signal of interest as well as the geometric properties to be estimated. This is followed by the
explanation of the algorithm used to estimate the geometric properties. Next, the details of the estimation
performance of the algorithm with respect to various parameters are presented. To illustrate the usefulness
of the method, two application examples are shown. Finally, the paper ends with a conclusion including a
summary and suggestions of possible future work.
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2 Method foundations

In this section, the definition of the three-component sinusoidal signals that are studied in this paper is
given, followed by the presentation of its trajectory in three-dimensional Euclidean space and the definition of
its geometric properties. These definitions are the foundations of the proposed method and are used throughout
the paper.

2.1 Definiton of three-component sinusoidal signals

In this paper, a signal is considered to be a three-component sinusoidal signal if it can be represented as a
matrix of three rows of data where each row corresponds to one component of the signal and where the three
components are each a sine wave of the same fundamental frequency f0. A three-component sinusoidal signal
r can therefore be written mathematically as in Eq. (1) where, for i ∈ {1, 2, 3}, Ai and ϕi denote the amplitude
and phase of the sinusoids respectively.

r(t) =

r1 (t)
r2 (t)
r3 (t)

=

A1 sin(2π f0t +ϕ1)
A2 sin(2π f0t +ϕ2)
A3 sin(2π f0t +ϕ3)

 (1)

Equation (1) shows that r is a parametrized differentiable curve and the variable t is called the parameter
of the curve [8]. In other words, r is a differentiable map r : R→ R3 of the real line R into R3, the set of
triples of real numbers. This means that r maps each t ∈ R into a point r(t) = [r1 (t) , r2 (t) , r3 (t)] ∈ R3 and
the functions r1, r2 and r3 are differentiable. For example, if r′1 (t) denotes the first derivative of r1 at the
point t and similar notations are used for the functions r2 and r3, the notation for the first derivative of r is
r′ (t) = [r′1 (t) , r′2 (t) , r′3 (t)] ∈ R3.

2.2 Trajectory in three-dimensional Euclidean space

There are many ways to plot a three-component sinusoidal signal. Figure 1 shows two ways of plotting
the three-component sinusoidal signal r with fundamental frequency f0 = 10 Hz, amplitude A1 = A2 = A3 = 1
and phase [ϕ1, ϕ2, ϕ3] =

[
0, 3π

7 , 8π

7

]
. In Fig. 1(a), each of the three components of r is plotted separately with

respect to the parameter t. In Fig. 1(b), the same signal r is represented in three-dimensional Euclidean space
where each component follows one axis of the space. The second plot shows a space curve which is the image
set r(R) ⊂ R3 called the trace of r [8]. The plot in Fig. 1(b) is the representation of interest in this paper. It
can be shown that a three-component sinusoidal signal follows an elliptical trajectory when plotted in three-
dimensional Euclidean space, as can be seen in Fig. 1(b). This trajectory is characterized by several geometric
properties related to its shape and osculating plane. It is these geometric properties that we are looking to
estimate in this paper, with the objective of using them to characterize the condition of the system from which
the three-component sinusoidal signal is acquired. These geometric properties are defined in the next section
by using basic differential geometry tools such as the Frenet frame. In what follows, the trace of r is also called
trajectory or space curve.

(a) Plot of r with respect to t
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Figure 1: Two different representations of the same three-component sinusoidal signal, r
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2.3 Geometric properties and Frenet frame

The three-component sinusoidal signal is called r for the radius vector, also known as the position vector,
because the vector r(t) defines a position from the origin at any time t on the elliptical trajectory. The norm,
or the length, of the vector r(t), denoted by ‖r(t)‖, is a first and simple interesting geometric property since
it gives an idea of the size of the ellipse followed by r(t). An approximation of the length of the semimajor
axis a and semiminor axis b of the ellipse can be deduced from the time evolution of ‖r(t)‖ (see Fig. 2). In
the case of noiseless signals, as in the example of Fig. 1, the shape of the trajectory is a perfect ellipse and the
maximum and minimum values of ‖r(t)‖ (Fig. 2(b)) are equal to the length of the semimajor and semiminor
axes respectively (Fig. 2(c)).

(a) Plot of r with respect to t
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Figure 2: Estimation of the semimajor axis a and semiminor axis b of the ellipse in Fig. 1

Equation (2) is used to calculate this first geometric property.

‖r(t)‖=
√

r1 (t)
2 + r2 (t)

2 + r3 (t)
2 (2)

Space curves can also be locally characterized by other geometric properties such as curvature, torsion and
the Frenet frame. Instead of a global reference frame like the Euclidean coordinates, a local reference frame
called the Frenet frame (or the Frenet-Serret frame) can be used to describe the space curve locally at each point
r(t) as well as to compute its local geometric properties including curvature and torsion [9]. The Frenet frame
is a moving reference frame defined by three orthonormal vectors, the tangent, normal and binormal vectors,
at each point of the curve. For each point r(t) of a smooth (continuous and differentiable) space curve, the
tangent T, normal N and binormal B vectors are given by Eq. (3), (4) and (5) [9, 10] where r′ (t) denotes dr(t)

dt
and × denotes the cross product.

T(t) =
r′ (t)
‖r′ (t)‖

(3)

N(t) =
T′ (t)
‖T′ (t)‖

=
r′ (t)× (r′′ (t)× r′ (t))
‖r′ (t)‖‖r′′ (t)× r′ (t)‖

(4)

B(t) = T(t)×N(t) =
r′ (t)× r′′ (t)
‖r′ (t)× r′′ (t)‖

(5)

The three unit vectors of the Frenet frame are illustrated in Fig. 3. The tangent vector T(t) at a particular
point r(t) of the trajectory shows the direction the point is moving in. The normal vector N(t) represents the
direction of change in the tangent vector. The plane described by the tangent and normal vectors is called the
osculating plane (Fig. 3(b)), which is also the plane the trajectory is in around r(t). Equation (5) shows that
the binormal vector B(t) is orthogonal to T(t) and N(t), and therefore to the osculating plane. This means that
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B(t) alone can be used to define this plane completely. Equation (5) sums up the relationship between the three
Frenet vectors and shows that they are orthogonal to each other following the right-hand rule.

(a) The Frenet frame at point r(t)

O

T(t)

N(t)

B(t)

r(t)

(b) Osculating plane

N(t)

B(t)

T(t)

Figure 3: The tangent T(t), normal N(t) and binormal B(t) vectors of the Frenet frame at a point r(t)

The Frenet frame obeys the three differential equations (also known as the Frenet-Serret formulas) written
in matrix form in Eq. (6), where the scalars κ (t) and τ (t) are respectively the curvature and the torsion of the
curve at point r(t). T′ (t)

N′ (t)
B′ (t)

=
∥∥r′ (t)

∥∥ 0 κ (t) 0
−κ (t) 0 τ (t)

0 −τ (t) 0

T(t)
N(t)
B(t)

 (6)

From the first line of Eq. (6), we see that ‖T′ (t)‖= ‖r′ (t)‖|κ (t)|. The curvature is therefore related to the
rate of change of the tangent vector T(t), and represents the tendency of r(t) to deviate from the local direction
of the movement. Thus, κ (t) tells us how sharp the trajectory is curving at any one point. The sharper the
bend, the greater the curvature. For example, the curvature of a circle is constant at each point of the circle and
is equal to the reciprocal of its radius (a small circle has greater curvature than a big circle).

Similarly, the third line of Eq. (6) leads to ‖B′ (t)‖ = ‖r′ (t)‖|τ (t)|. Hence, the torsion τ (t) is directly
related to the rate of change of the binormal vector B(t) and shows the tendency of r(t) to deviate from the
osculating plane. For example, the torsion is zero if the trajectory stays in the same plane but increases when
the trajectory changes planes.

The curvature and torsion can be expressed as a function of r(t) as in Eq. (7) and (8) [11, 12], where ·
denotes the dot product.

κ (t) =
‖r′ (t)× r′′ (t)‖
‖r′ (t)‖3 (7)

τ (t) =

(
r′ (t)× r′′ (t)

)
· r′′′ (t)

‖r′ (t)× r′′ (t)‖2 (8)

The geometric quantities presented above can be used to locally characterize the geometry of the trajectory
followed by a three-component sinusoidal signal and one possible algorithm to estimate these quantities is
explained in the following section.

3 Estimation algorithm

With the objective of characterizing the geometry of the trajectory followed by the three-component sinu-
soidal signal, we have chosen to estimate four geometric properties:
• the magnitude of the position vector, ‖r(t)‖
• the binormal vector, B(t)
• curvature, κ (t)
• torsion, τ (t)
In this section, the algorithm used to estimate these geometric properties is presented. It is based on Eq. (2),

(5), (7) and (8) which show that these quantities can be calculated in terms of the values r(t) of the position
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vector and its first three derivatives. Figure 4 is a block diagram representing the three main steps of this
algorithm.

x(t) Bandpass
filter

r(t) r(t)

Differentiator

Differentiator

Differentiator

Differentiation

r′ (t)

r′′ (t)

r′′′ (t)

Equations

(2)

(5)

(7)

(8)

Geometric
properties
‖r(t)‖

κ (t)

B(t)

τ (t)

Figure 4: Block diagram of the estimation algorithm

The first step involves filtering the measured three-component signal x. Measured signals usually contain
more than one frequency component including noise. It is therefore essential to filter such signals first to
remove noise and all unwanted frequency components leaving only one frequency component f0. To carry out
this step, a linear phase FIR filter [13, 14] which can be a lowpass, bandpass or highpass filter is used. The
suitable filter is chosen according to the frequency f0 of the signal we want to study. This step produces the
three-component sinusoidal signal r following an elliptical trajectory from which we will be able to compute
the geometric properties.

From the definition of the geometric properties, the next necessary step is the differentiation of r. For
this step, a linear phase FIR differentiator filter is used. Instead of a full band differentiator, a partial band
differentiator is used in order to avoid amplifying possible residual high frequency components and maximize
the output signal-to-noise ratio (SNR) [15]. As with the first step, this differentiator filter has a bandwidth
adapted to f0 as shown in Fig. 5. Since r needs to be differentiated three times, the differentiator filter is
applied three times consecutively to r.

0 f0 f0 + ε fs
2

f

|H ( f )|

Figure 5: Frequency response magnitude of the partial band differentiator

The final step of Fig. 4 is to compute the desired geometric properties using Eq. (2), (5), (7) and (8), where
only basic mathematical operators (division, vector norm, dot product, cross product) are needed.

The proposed algorithm only uses FIR filters and simple instantaneous operators, hence can be easily im-
plemented in real time. Its estimation performance is detailed in the next section.

4 Estimation performance of algorithm

Testing a method on simulated signals first before applying it to real signals is essential to know how well it
works in different conditions. In this section, the performance of the algorithm as well as its limits with respect
to various parameters are discussed. Three parameters which influence the accuracy of the method have been
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identified: the amount of noise present in the signal, the frequency of the three-component signal f0 and the
ellipticity (flatness) of the ellipse.

The performance of the method is measured using the mean squared error (MSE) of the estimators ‖r̂‖, B̂,
κ̂ and τ̂ . The equations used to compute the four MSE are given by Eq. (9), (10), (11) and (12) for discrete-time
signals where N represents the number of samples of the signals.

• MSE of the magnitude of the position vector MSE‖r‖ where ‖r‖ and ‖r̂‖ are the theoretical and estimated
values of the magnitude of the position vector respectively:

MSE‖r‖ =

N

∑
k=1

(‖r [k]‖−‖r̂ [k]‖)2

N

∑
k=1
‖r [k]‖2

(9)

• MSE of the binormal vector MSEB where B and B̂ are the theoretical and estimated values of the binormal
vector respectively:

MSEB =

3

∑
i=1

(
1
N

N

∑
k=1

(
Bi− B̂i [k]

)2

)
3

∑
i=1

B2
i

=
3

∑
i=1

(
1
N

N

∑
k=1

(
Bi− B̂i [k]

)2

)
(10)

where Bi is the ith component of B which is a unit vector

(
3

∑
i=1

B2
i = 1

)
.

• MSE of the curvature MSEκ where κ and κ̂ are the theoretical and estimated values of the curvature
respectively:

MSEκ =

N

∑
k=1

(κ [k]− κ̂ [k])2

N

∑
k=1

κ [k]2
(11)

• MSE of the torsion MSEτ where τ̂ represents the estimated values of the torsion:

MSEτ =
1
N

N

∑
k=1

τ̂ [k]2 (12)

This MSE is not normalized contrary to the previous ones, because the theoretical value of τ is zero
for a three-component sinusoidal signal with only one frequency component and constant amplitude and
phase.

The influence of the SNR, the signal frequency and the ellipticity on how well the method works is presented
next. For each parameter, the type of simulated three-component sinusoidal signal used is mentioned at the
beginning, followed by graphs illustrating the results of the tests. The MSE plotted in the graphs is the average
of 100 MSE obtained through Monte Carlo simulations.

4.1 Performance with respect to SNR

A 40-second discrete-time three-component sinusoidal signal x given by Eq. (13) with fundamental fre-
quency f0 = 10 Hz and sampling frequency fs = 256 Hz is generated.

x [k] =

x1 [k]
x2 [k]
x3 [k]

=

A1 sin(2π f0kTs +ϕ1)
A2 sin(2π f0kTs +ϕ2)
A3 sin(2π f0kTs +ϕ3)

 (13)
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All sinusoids have the same amplitude, A1 = A2 = A3 = 20, and their initial phase are ϕ1 = 0, ϕ2 =
3π

7 and
ϕ3 =

8π

7 rad. Such a signal follows a trajectory in the shape of an ellipse with semimajor axis a = 29.71 and
semiminor axis b = 17.81. The ellipticity, denoted here as b

a , is therefore 0.5994. The binormal vector B is
constant in this case with the values:

B [k] =

B1
B2
B3

=

 0.5910
0.7370
−0.3280

 (14)

An additive white Gaussian noise with a variance σ2
i is added to each component xi. The amount of noise is

given by the SNRdB defined as 10log10
A2

i
2σ2

i
. For the sake of simplicity, the same SNR is used for all components.

Figures 6(a)-(d) show the relationship between this SNRdB and the MSE of the four estimators. From the
graphs, it can be deduced that the greater the SNR, the smaller the error, as expected. The worst estimation
error is obtained for the curvature κ . This can be due to the fact that κ̂ is the only estimator that uses derivatives
of r(t) and estimates a time-varying quantity. ‖r̂‖ estimates a time-varying quantity without differentiators,
while B̂ and τ̂ need differentiators but estimate constant values.

(a) MSE‖r‖
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Figure 6: MSE of four estimators with respect to SNR

4.2 Performance with respect to signal frequency

The three-component sinusoidal signal x is the same as in the previous case. The only difference is that the
amount of noise added to the signal is fixed at SNRdB = 20 dB and that the fundamental frequency f0, which is
now the parameter of interest, varies between 6 and 122 Hz (with a resolution of 1 Hz).

The corresponding MSE are shown in Figures 7(a)-(d). These figures clearly show that MSE‖r‖ is indepen-
dent of f0 while the other MSE increase when f0 is very low compared to the sampling frequency. Contrary to
‖r̂‖, estimators B̂, κ̂ , τ̂ all use derivatives of r(t), and one can think that this decrease in performance is due
to the FIR differentiator filter. However, a theoretical study, not detailed in this paper, clearly shows that this
phenomenon is due to the residual noise left by the first bandpass filter of the proposed algorithm. It is this
noise which deteriorates the SNR at the output of each differentiator.

4.3 Performance with respect to ellipticity

In this paper, the ellipticity of the trajectory is measured using the ratio between the semimajor axis a and the
semiminor axis b of the ellipse. This quantity b

a can vary between 0 (trajectory=line) and 1 (trajectory=circle).
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(a) MSE‖r‖
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Figure 7: MSE of four estimators with respect to signal frequency

Once again, we use the same three-component sinusoidal signal x, with SNRdB = 20 dB and f0 = 10 Hz.
The parameter of interest is now the ellipticity of the trajectory b

a which varies from 0.1 to 1. To do this, we
keep the same amplitude for the sinusoids, A1 = A2 = A3 = 20, but change their initial phase ϕ1, ϕ2 and ϕ3.
Note that doing this also changes the value of the binormal vector B.

The results are illustrated in Fig. 8(a)-(d). For the magnitude of the position vector ‖r‖, the error is constant
whatever the flatness of the ellipse. On the contrary, the MSE of the other estimators are not independent of the
ellipticity and the nearer the ellipse is to a circle, the smaller the errors. The reason for this is still unclear to us
at the moment and we shall investigate this point further.
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Figure 8: MSE of four estimators with respect to ellipticity
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From these performance tests, several things should be kept in mind before applying the method. A lot
of noise in the measured signal deteriorates the estimation performance of the algorithm, especially when the
signal frequency is low compared to the sampling frequency. Moreover, if the signal follows a trajectory that is
almost a line or a very flat ellipse, bear in mind that the algorithm will produce higher estimation errors.

5 Application examples

The proposed method has been applied to three-component sinusoidal signals of low frequency [16] and
is now extended to signals of arbitrary frequency. The usefulness of this method as an informative means of
describing three-component sinusoidal signals is illustrated with an application to a simulated signal and an
experimental signal.

5.1 Simulated signal

The proposed method is first applied to a simulated signal in order to illustrate the tracking capabilities of
this algorithm. This three-component signal contains only one frequency component f0 with a white Gaussian
additive noise corresponding to a SNR of 20 dB. A change is introduced in the amplitude and phase of each
sinusoid between 4.50 and 4.55 s, leading to a continuous change in the shape of the trajectory and therefore in
its geometric properties. The results are shown in Fig. 9.

The measured signal is represented in Fig. 9(c) and the corresponding trajectory in Fig. 9(a), where the
influence of noise is clearly visible. The bandpass filtered signal is shown in Fig. 9(b) and the corresponding
trajectory in Fig. 9(d), where the noise has been significantly attenuated. The change in the signal character-
istics is visible in Fig. 9(d) and the corresponding geometric change in Fig. 9(b). Figures 9(e)-(h) show the
estimated geometric properties. As expected, ‖r̂ [k]‖ and κ̂ [k] are time-varying because of the elliptic shape of
the trajectory. The variations of these two quantities are greater before the change than after. This shows that
the elliptical trajectory followed by r̂ [k] is flatter before the change than after. The binormal vector and torsion
are more related to the osculating plane. Figures 9(g) and 9(h) show that B̂ [k] and τ̂ [k] are nearly constant when
the signal characteristics (amplitude and phase) are constant. This means that the trajectory has a constant os-
culating plane during these parts of the signal. Nevertheless, B̂ [k] has different coordinates before and after the
change corresponding to two different osculating planes. Finally, the torsion τ̂ [k] takes large values only during
the change highlighting a change in the osculating plane and could be useful as a change detector.

5.2 Experimental signal

The experimental signal is measured on an induction motor running at a constant rotating frequency of
14.7 Hz. Three accelerometers are placed on this engine to measure its vibrations in three orthogonal directions.
The output of the sensors are acquired by an acquisition system containing anti-aliasing filters. The chosen
sampling frequency is 256 Hz and the length of the signal is about 10000 samples. The objective here is to
characterize the geometric properties of the engine movement at the rotating frequency. Therefore, the proposed
algorithm is used to characterize the geometry of the measured vibrations around this rotating frequency. The
central frequency of the initial bandpass filter is thus set to 14.7 Hz. The results obtained are shown in Fig. 10.
Fig. 10(a) and 10(c) show that the measured signal contains several frequency components and noise. Fig. 10(b)
and 10(d) show that the bandpass-filtered signal is composed of only one component of frequency 14.7 Hz, as
desired. We see that in Fig. 10(e) and 10(f), ‖r̂ [k]‖ and κ̂ [k] are time-varying which means that the trajectory
followed by the signal is elliptic at this particular frequency. Next, Fig. 10(g) and 10(h) show that the osculating
plane is nearly constant despite small oscillations highlighted by the torsion. This simple example shows that
our method facilitates analysis of the geometry of a movement at a given frequency.
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Figure 9: Geometric properties estimation of a three-component simulated signal
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Figure 10: Geometric properties estimation of a three-component experimental signal (electric motor vibra-
tions)
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6 Conclusion

A method of estimating the geometric properties of the elliptical trajectory followed by a three-component
sinusoidal signal in three-dimensional Euclidean space is proposed in this paper. A simple estimation algorithm
is presented and its estimation performance is analyzed. From this analysis, it can be seen that the performance
is limited when it comes to low frequency signals with additive noise and in the case of a linear trajectory. The
method is validated by applying it to an illustrative synthetic example and a simple experimental signal. Several
improvements can be envisaged. The noise removal step can be developped further and other global geometric
properties such as the semimajor and semiminor axes a and b of the ellipse as well as its orientation in space
can be estimated in a better fashion. Other possible developments include changing domains where instead of
representing the signals in the time domain, they are represented in the frequency domain, which can fix filter
problems as well as make the method usable for random signals.
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