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Abstract 
The presence of air bubbles inside an internal gears pump usually leads to fast pump damage and breaking. 

When bubbles enter the high pressure chamber they may implode releasing pressure waves in the fluid that 

ultimately detach material from the gears and other crucial pump parts. This paper recalls and describes the 

activities performed in order to develop a condition monitoring system able to indicate the presence of air 

bubbles in an internal gear pump that feeds the hydraulic system of a packaging machine: this pump 

experienced a breakdown after only 3 minutes of air bubbles flowing in it. Since the machine is supposed to 

work continuously, an unexpected stop has heavy consequences in terms of loss of production time: 

therefore the machine producer decided to implement the condition monitoring (CM) of the pump. The 

producer’s goal is to use the warnings/alarms generated by the CM algorithm as a supplemental machine 

control signal: this may eventually command the stop of the machine to preserve it (and consequently the 

machine functionality) from fast damaging. The main phases of the development had been: data recording 

and analysis, diagnostic parameters identification, algorithm development and final algorithm validation in 

field tests. The data recording campaign included the simultaneous acquisition of 14 quantities of 5 different 

kinds (vibration, pressure, temperature, electrical torque and angular speed). The data analysishighlighted 

one of the vibration signals as the most significant to be monitored. Several signal features were analysedin 

order to evaluate their diagnostic capability(i.e.: the ability to detect the presence of air bubbles in the 

pump);five features are used by the CM algorithm for the bubbles warning/alarm generation, these being the 

RMS, the bandpass filtered signal RMS, the Signal Entropy, the Spectral Mean Square Error and the Spectral 

Cumulative Difference. Currently, the algorithm is being tested and validated on recorded data and a field 

test campaign is being scheduled. 

 
1 Introduction 
Hydraulic pumps are one of the most used components in modern industry: because of this, several types of 

hydraulic pumps have been developed to satisfy the industry requests. This paper is focused on the detection 

of air flow in a hydraulic internal gears pump which feeds the hydraulic system of a plastic caps forming 

machine. The cap is formed via the compression of the plastic material in a mould by an hydraulic cylinder: 

the machine hosts 64 moulds and the relative compression cylinders on a rotating support (or “turntable”), 

and this arrangement allows a production rate up to 1600 caps/min (at this production rate the turntable 

rotates at 25 rpm ≈ 0.42 Hz). The hydraulic system feeding is provided by two internal gears pumps 

(separated for high and low pressure oil feeding), which share the inlet port and are coupled on the same 

driveshaft - the latter being actuated by an electric motor. An internal gears pump (Fig. 1) is basically a 

gearing with an insulator between the two gears (the inputgearwith external teeth and the output gearwith 

internal teeth): the rotation of the gears carries the fluid from the inlet to the outlet while increasing the fluid 

pressure. The insulator (named “filled segment carrier” in Fig. 1) is composed of a static part hosting a 

mobile part: the mobile part is pressed against the outer gear teeth by three flat springs in order to realize the 

chambers insulation. Incidentally, the high and low pressure pumps have the same number of teeth, this 

being 13 for the inner gear and 19 for the outer gear: since they are coupled on the same driveshaft they 

exhibit the same gearing fundamental frequencies (e.g.: mesh frequency). The machine hydraulic system is 

quite complex (also due to the hydraulic coupling between the machine static part and the turntable) thus it’s 

possible that some air seepage in the oil occurs. When this happens, the pumps break after few minutes of 

oil/air mixture flow inside them; during the machine tests this problem manifested and the high pressure 

pump broke after only 3 minutes of oil and air flowing in it. In Fig. 2 is visible the resulting damage on the 

pump’s internal chambers insulator, which is the most fragile part in this situation. 
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Figure 1: The internal gears pump subject of this paper. 

 
Moreover, the damage originated particles are spread inside the hydraulic system where they can generate 

further damages: giventhe complexity of the hydraulic system, along cleaning time is required and 

consequently there is a large production loss. The machine producer decided that a diagnostic system able to 

detect the presence of air in the pumps was the best solution to thisproblem, and some motivations of this 

choice are the sporadic nature of the fault and its severity on the machine operational time. The producer’s 

goal is indeed to use the warnings/alarms generated by a condition monitoring (CM) algorithm as a 

supplemental machine control signal: this may eventually command the stop of the machine in case of air 

flow through the pump to preserve it (and consequently the machine functionality) from fast damaging. This 

paper is organized as follows: the next section summarizes and describesthe experimental campaign and data 

analysis. Subsequently the chosen diagnostic parameters and their behaviour are presented. Finally, the 

current version of the pump CM algorithm is illustrated. 

 
 

Figure 2: The chambers insulator damaged after the second experimental test. 

 

2 Experimental tests and setup 
A series of three experimental tests was performed with different goals. The recorded physical quantities 

were triaxial pumps vibrations, pumps inlet pressure (the inlet port is shared by the two pumps), outlets 

pressures and temperatures and driving motor torque. An extra single axis vibration signal coming from a 

recirculating pump was also recorded, because this pump was recognized to emit some hissing when air seep 

in the oil; finally, a tachometric signal – giving one pulse per driveshaft revolution – was recorded besides 

the aforementioned quantities to perform time synchronous averaging, thus raising the total number of 

acquired signals to 14 (sampling frequency was 10 kHz per channel). National Instruments hardware and 

software were used for data acquisition. The pumps behaviour was recorded in all the threemain operative 

modalities of the machine, these being “production” (complete operational state of the machine), “rotation 

only” (the turntablerotate but the hydraulic cylinders aren’t working) and “pump only” (the turntable is 

stationary;the hydraulic system is fed and pressurized while all the oil flow is routed to the tank). The first 

test was aimed to the characterization of the pump behaviour in standard conditions (i.e.: no air leakage in 

the hydraulic system), thus some major operative parameters were changed along the trials (like the 

production rate, feeding pressure, etc.) inside all the three operative modalities, resulting in a total of 33 trials 

for this first test. This was done to highlight the differences in the signals behaviour with respect to the 

widest set of machine operation conditions. The analysis of this set of data permitted to identify two major 

dynamics, one relative to the speed of the pumps and one to the speed of the turntable. The pumps dynamic 
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is practically equivalent to typical gear behavior [1, 2, and 3]: mesh frequency and its harmonics dominate 

the spectra and the other gear fundamental frequencies can be easily observed both in vibration and pressure 

spectra. The turntable dynamic (Fig. 3) is composed of some notable frequencies that are dependent on the 

turntable rotation speed ft, e.g. the 64
th
 harmonic of the latter (i.e.: 26.7 Hz) which represents the oil request 

by the 64 compression cylinders. This data analysis highlighted aft harmonic that couldn’t initially be 

associated with any known machine event, i.e. the 8
th
ft harmonic located at 3.3 Hz: a consultation with the 

machine producer allowedlinking this harmonic with the oil request from the 8 high pressure oil feeding 

channels which route the oil flow from the pumps to the cylinders. All the aforementioned signal features are 

recognizable in both the vibration and pressure spectra, making these two quantities the most communicative 

from the diagnostic point of view; indeed, pumps outlets temperature signals don’t give any useful 

information (as expected, because of their slow response) as the driving motor current. 

 

 
 

Figure 3: Spectrum of the outlet pressure signal from the high pressure pump. This spectrum is dominated by 

the turntable hydraulic dynamic. Fr1 identifies the input gear speed. 

 

The second test was aimed to the characterization of the fault and to the identification of signal parameters 

able to communicate the presence of air in the pumps: this was done by deliberately injecting a known air 

flow at the pumps suction, which generated air bubbles in the oil. The injected air flow was increased in 

every trial, starting from 0 l/min to 1.2 l/min with 0.2 l/min increments. Every trial was 30 s long, and was 

composed of 10 initial seconds of normal operating conditions (i.e.: no air injected) followed by 10 seconds 

of air injection and final 10 seconds of no air injection: this trial arrangement permits the observation of the 

transients relative to the entry of air into the pumps and the disposal out of air from them. The recorded 

quantities were reduced from the first test to only triaxial vibrations of the pumps, pumps pressures, driving 

motor current, tachometric signal and air injection valve state (i.e.: ON/OFF), all sampled at 10 kHz. Since 

the fault occurrence is very severe on the pump state only 11 trials were performed, all of them in the “only 

pumps” machine modality and with the same setting of other major operative parameters (in particular, the 

rotation speed of the pumps). The data were analysed by means of the Short Time Fourier Transform (STFT, 

[1]), an analysis technique that gives a time-frequency representation of the signal (i.e.: the Spectrogram) 

from which is easy to identify the changes of its spectral content along the time. This choice is motivated 

also by the fact that this powerful tool could be used as a basis for advanced signal features calculation (e.g.: 

[4, 5, 6]), a further activity performed in this development process. The STFT analysis of this set of data 

highlights the vibration as the most communicativesignature of the presence of air in the pump, confirming 

as the most efficient and therefore the most used physical parameter to be acquired for the condition 

monitoring (e.g.: [1,2,3,7,8]). The pump vibration spectrograms (Fig. 4-5) exhibit variations in the 

amplitudes of the mesh frequency harmonics when air is injected. These variations aren’t systematic:if 

harmonics in one specific trial increase their amplitude when the air flow starts, they may act inversely (i.e.: 

amplitude decrease) in another trial involved by a different air flow. The parts of the spectrum that lie inside 

two mesh frequency harmonics exhibit some background noise when the machine operates in normal 

conditions: the noise level increases systematically when air is injected, and its growth relates to the increase 

of the injected air flow along the trials (i.e.: greater air flow in the pump induce greater noise in those 

spectrum areas). The most sensitive vibration directions are the two that lie on the gearing plane (i.e.: the two 

perpendicular to the pump axis of rotation) of the high pressure pump. In contrast, the pressure and motor 

current signals appear completely insensitive to the presence of air in the pumps, making them diagnostically 

useless.  
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Figure 4: Spectrogram of the vibration of the high pressure pump. The two white vertical lines indicate the 

air injection start and stop (0.6 l/min in this trial). The dominating frequencies (i.e.: the horizontal lines) 

correspond to the mesh frequency (324 Hz) and its harmonics. 

 

The last test performed was arranged very similarly to the second test: the differences are the operative 

modality of the machine (“production” in this third test, “only pumps” in the previous one) and the sampling 

frequency used to record the signals (raised to 50 kHz). The trials structure and the recorded quantities 

remained those of the second test. The pumps were subjected to revision before this test, as the previous 

trials with air injection heavily damaged the pump chambers insulators. The goals of this test were the 

following: to highlight possible influences of the turntable dynamics on the diagnostic capability of the 

signals; to build a dataset relative to fault occurrences during complete machine operation to be used in later 

algorithm developing; to investigate if higher frequencies in the signals spectra could help to communicate 

the presence of air in the pumps. The data analysis shows that the spectrum behaviour descripted before 

replicates itself also in high frequencies, and confirmed the overall signals behaviours. The next step in the 

development of a pump monitoring system was the identification of some numerical indicators – based on 

the pump vibration signal – able to communicate the presence of air bubbles: this is treated in the next 

section. 

 

 
 

Figure 5: Spectrogram of the vibration of the high pressure pump. The two white vertical lines highlights the 

air injection start and stop (0.8 l/min in this trial).The dominating frequencies (i.e.: the horizontal lines) 
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correspond to the mesh frequency (324 Hz) and its harmonics. Notice the increase of the background noise 

w.r.t. Figure 4 when air is injected. 

 

3 Diagnostic parameters 
The numerical indicators that can highlight the presence of air bubbles in the pumps must be calculated on-

line by a diagnostic algorithm, which was decided to operate on a segment of vibration signal. In order to 

reduce the overall diagnostic system cost, it has been chosen to monitor only the vertical axis of vibration 

lying on the gearing plane: the experimental data analysis indeed shows that this is the most sensible axis 

from a diagnostic point of view. The temporal length of vibration segment must be chosen appropriately in 

relation with the rapidity of the fault developing: in this case the air flow presence leads to machine failure in 

3 minutes (worst case experienced), so the segment duration was chosen to be less than 1 second, giving the 

algorithm the possibility of checking the pump status at least 180 times in the worst case. Given this 

requisite, the parameters have been investigated both in their diagnostic ability and in their dependence from 

the duration and sampling frequency of the vibration signal segment. This research resulted in the 

identification of the following 5 vibration signal parameters: RMS (Eq. 1), Shannon Entropy (E, Eq. 2), 

bandpass filtered signal RMS (FRMS, Eq. 3), Spectral Cumulative Difference (SCD, Eq. 3) and the Spectral 

Mean Square Error (SMSE, Eq. 4). In these equations, 𝑥(𝑡)is the actual vibration signal segment and nis its 

samples number, 𝑥𝑓(𝑡)is the bandpass filtered𝑥(𝑡), 𝑋(𝑓)is the autospectrum of 𝑥(𝑡) and N = n/2is its 

frequency bins number, and 𝑋(𝑓) is a reference autospectrum relative to machine in standard condition. In 

Equation 2, if 𝑥 𝑡 = 0 the convention 0 ∙ ln 0 = 0 is used; the filtering band for FRMS calculation has been 

chosen to be 4 ÷ 8 kHz: in this frequency band the aforementioned increase of the background noise showed 

to be stronger during the trials. 

 𝑅𝑀𝑆 =  
1

𝑛
 𝑥2(𝑡)𝑛  (1) 

 

 𝐸 =   𝑥2(𝑡) ln𝑥2(𝑡) 𝑛  (2) 

 

 𝐹𝑅𝑀𝑆 =  
1

𝑛
 𝑥𝑓

2(𝑡)𝑛  (3) 

 

 𝑆𝐶𝐷 =   𝑋 𝑓 − 𝑋(𝑓) 𝑁  (4) 

 

 𝑆𝑀𝑆𝐸 =
1

𝑁
  𝑋 𝑓 − 𝑋(𝑓) 

2

𝑁−1  (5) 

 

In Figure 6 the behaviour of the RMS is shown; this behaviour is qualitatively the same of the other chosen 

parameters, which is a “standard condition” (healthy) value which changes regularly when there is air flow in 

the pump. The parameters exhibit different values for the same standard condition but in different trials: this 

is probably due to the fact that before the tests the machine was initially off, so the trials were performed 

during its warm-up phase. For example (Fig. 6), in the first trial of the third test the RMS with no air flow in 

the pumps is about 1.8, while in the last trial it is about 1.5 (same test, same “no air flow” condition).Since 

the machine could reach different regimen temperatures (depending on the environmental conditions and 

other factors) a simple parameter threshold check doesn’t appear as a robust diagnosis method; moreover, 

recalling the previous RMS example, the “healthy” RMS value of 1.5 in the last trial corresponds to a 

“faulty” RMS value in the first trial – and this occurs to the other parameters too. 
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Figure 6: Pump vibration RMS evolution. Each graph relates to a different trial from the third test (the graph 

legend lists the trials in chronological order of execution). Since the air injection valve was commanded 

manually, the moments of injection start and stop are slightly different in each trial: nevertheless, the 

presence of air is easily recognizable as a distinct RMS variation in each graph central area. Notice that the 

“healthy” values (i.e.: those at the beginning and at the end of the graph) drop from a trial to the next one, 

probably because of the machine warm-up. 

 
In order to overcome this issue it was decided to base the diagnosis on the comparison of the percentage 

variations of the parameters value (with respect to a healthy reference value) with an appropriate threshold. 

The healthy reference value is obtained with an appropriate calibration operation at every machine start (this 

is discussed in detail in the next section). This arrangement makes the percentage variations of the 

parameters a much more robust indicator of the pump flow status than the sheer parameters values. The 

influence of the vibration segment duration (T) and sampling frequency (fs) on the parameters behaviour was 

studied in all the 4 combination T-fs resulting from taking T = 0.1 and 0.5 s and fs = 10 and 50 kHz: no 

particular influence was found, so the final values for the vibration segment were chosen as T = 0.1 s and 

fs = 10 kHz. With this choice the algorithm will be able to check the pump status at least 1800 times in the 

worst case; this choice of T and fs gives also 1000n   and 500N   in Equations 1-5, and limits the 

filtering band for the FRMS calculation to 4 ÷ 5 kHz without diagnostic performance loss.The next section 

illustrates how these parameters are used by the algorithm to perform the diagnosis. 

 

4 Diagnostic Algorithm 
The diagnostic algorithm flowchart is reported in Figure 7. The input is the vibration signal segment and the 

output is a Boolean variable which is “true” when there is air flow in the pumps. This is the basic algorithm 

and will probably be passible of some modifications in its (still on-going) developing. The algorithm steps 

are the following: first of all the diagnostic parameters are evaluated; if calibration is required or been 

performed, the parameters values contribute to the references creation, otherwise the diagnosis is performed. 

The latter is done by comparing the parameters percentage variations (w.r.t. their reference values) with their 

relative thresholds: this comparison generates a “pre-alarm” flag for every parameter which is “true” when 

the variation is greater than the threshold. The 5 pre-alarm flags are converted from “true/false” to “1/0” 

values and then weighted summed: this weighted sum (S in Fig. 7) is finally compared to a “global” 

threshold for the diagnosis generation (i.e.: the output Boolean variable), which will be “true” (meaning: “air 

flow in pumps”) when the weighted sum is greater than the global threshold. The last algorithm step is the 

parameters references update. 
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Figure 7: The Condition Monitoring Algorithm flowchart. 

 
In the present algorithm version, the parameters references are obtained as the average of the first 𝑛𝑟values 

of each parameter; for the spectrum dependant parameters (SCD and SMSE) the reference is the spectrum 

𝑋(𝑓)which is obtained as the average of the first 𝑛𝑟calculated spectra. Similarly, the references update is 

obtained by a mobile average of the last 𝑛𝑟  parameter values (𝑛𝑟  has been set to 70 in the actual algorithm 

version). The calibration phase is set to be automatically performed at the first algorithm execution (i.e.: at 

every algorithm/machine start), but it can be also performed on demand by an operator command: in both 

cases, to obtain a correct calibration it must be assured that the machine is working correctly, i.e. without air 

flow in the pumps. This references management solution should consent the algorithm to adapt and function 

correctly also when the machine regimen condition is different to the one experienced during the tests, but it 

has the main drawback of being modestly sensible to slow developing faults: indeed, if 𝑛𝑟 is set to be large, a 

slow but constant percentage variation of the parameter could be absorbed in the mobile averaging without 

shifting to “true” its relative pre-alarm. This is crucial because in the actual algorithm form, a parameter 

reference update is done only if that parameter’s pre-alarm is false: for example, if the RMS percentage 

variation is greater than the RMS threshold, the actual RMS value will not be included in the mobile 

averaging calculation and consequently the RMS reference value will not be updated. This references 

updating politic is very simple and has its own limitations, but it can be easily modified (by changing few 

logic conditions in the program) in future developing if needed. The parameters thresholds, the parameters 

weights for the weighted sum, and the global threshold have been obtained manually by the developers by 

means of a kind of “algorithm tuning”, based on the dataset obtained in the third test. Figure 8-10 shows 

some comparisons of the algorithm diagnoses and the air injection valve command: it can be seen how the 

pump status is correctly estimated in every condition. 

 
 

Figure 8: Comparison of the algorithm diagnoses and the air injection valve command. In this trial the 

injected air flow was 0.2 l/min, i.e. the smallest tested. The algorithm diagnosis is correct. 
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Figure 9: Comparison of the algorithm diagnoses and the air injection valve command. In this trial the 

injected air flow was 0.8 l/min. The diagnosis isn’t perfect (e.g.: alarm is erroneously OFF at t = 20 s) but 

acceptable: indeed, this is the most difficult case to diagnose because the diagnostic parameters exhibit the 

most irregular behaviour with this particular air flow. 

 

 
 

Figure 10: Comparison of the algorithm diagnoses and the air injection valve command. In this trial the 

injected air flow was 1.0 l/min. The algorithm diagnosis is correct: the alarm state oscillationsvisible around 

t = 24 s are relative to the last air bubbles exiting the pump. 

 
The visible lag between the opening command of the valve and the algorithm output transition from “false” 

to “true” corresponds to the time needed for the injected air flow to travel from the injection point to the 

pump, thus this lag is negligible in practice; similarly, the oscillations visible on the output after the valve 

closing command are relative to the air flow disposal out of the pumps (i.e.: residual bubbles passing through 

the pumps), which is not immediate. These two lags are also visible in the spectrograms reported in Fig. 4 

and Fig. 5. When the injected air flow is equal to 0.8 l/min some oscillations of the output occur when the 

valve is open, thus giving some erroneous diagnoses: indeed this particular amount air flow causes an 

irregular behaviour of the 5 diagnostic parameters (an example is visible in Fig. 6), resembling a kind of 

hydro-mechanical resonance condition of the pump. 

 

5 Conclusions and future work 
A diagnostic solution for air flow detection in an internal gears pump has been developed. The methodology 

used in the development process has been exposed. In its current version, the Condition Monitoring 

algorithm is able to correctly identify the presence of air bubbles in the available datasets. Currently the test 

bench does not allow to evaluate the efficiency of the algorithm  in case of slow developing faults, frequently 

arisinginside the machine hydraulic systems, therefore further investigations are required. In order to verify 

the CM algorithm behaviour in this case, a further experimental test is being set up by the machine producer: 

the air injection will be gradual and slightly increasing and will not be stopped until the oil in the tank will be 

completely mixed with air, i.e. the tank will be full of foam. Authors propose two possible extensions of the 

algorithm to monitor slow air seepages: the re-tuning of the algorithm to obtain a new set of thresholds and 

parameters weights able to identify this kind of infiltration by preserving, if possible, the identification of 

“fast” faults; alternatively the solution may be to add an additional Boolean output which will be specific for 

“slow” faults. The generation of this output might be identical to the one presented in the previous section, 

but it will have an own set of parameters thresholds and weights. By doing this, two alarms will be available 

for the machine operator (or the machine control system) which will dedicated to highlight the presence of a 

“fast” (i.e.: “step-like”) or “slow” (“ramp-like”) air seepagein the hydraulic system. 
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