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Abstract

Due to the constant angular distance between the roller elements, repetitive vibrational patterns generated by
localised bearing faults exhibit specific statistical properties. Under constant rotational speed the repetitive
impacts are regarded as “periodic” with some random fluctuations in order to accommodate the slippage or
small variation in rotational speed. Modelling these random fluctuations as normally distributed can lead to
negative time between two impacts. This paper describes the repetitive vibrational patterns as a realisation
of point process with (mixture)inverse Gaussian distribution of the inter-event times. Having support on the
interval (0, o), the random impact times can acquire strictly positive values. The decision whether to use pure or
mixture inverse Gaussian distribution is performed using Bayes’ factors and it requires no information regarding
the current rotational speed. The proposed approach is applicable for modelling localised bearing faults under
both constant and variable rotational speed. The applicability of the model was evaluated on vibrational signals
generated by bearing models with localised surface fault.

1 Introduction

Bearing faults are one of the most common causes for mechanical failures [1, 26]. Consequently, the
majority of the proposed fault detection methods address the issue of bearing fault detection. Commonly, the
well adopted methods focus on extracting and analysing the behaviour of a set of features that describe bearing
surface faults, so-called bearing fault frequencies [33]. Inferring about bearing condition using such a feature
set is possible if the monitored bearing is operating under constant rotational speed. However, rotational speed
fluctuations, which are quite common in real world, reduce the effectiveness of these features. In this paper we
model the vibrational patterns generated by bearings with localised surface fault modelling as a point process
with inverse Gaussian mixture inter-event distribution.

From a practical point of view, condition monitoring of bearings operating under variable regimes is the
most plausible real world scenario. Under variations in the operating conditions are precisely measured and this
information is used in the fault detection process. Several approaches are commonly applied for instance, time—
synchronous averaging (TSA) [32, 38], higher order spectra analysis for the detection of various bearing faults
under different load conditions [24]. In the same manner Bartelmus and Zimroz [5] successfully performed
fault detection in multi—stage gearboxes by taking into account the information about both variations in speed
and load. Another way of overcoming the difficulties induced by variable operating conditions is to analyse
the statistical characteristics of the produced vibrational signals like entropy indices [9, 10] and distribution of
wavelet coefficients [36].

Focusing on bearing fault detection, the main source of information are the time occurrences of particular
vibrational patterns. Antoni and Randall [3] proposed the possibility of using point processes for modelling the
repetitive vibrational patterns. Borghesani et al. [7] analysed the distribution of the times between the repetitive
patterns under non-stationary operating conditions. In the same manner this paper presents an approach that
describes the impacts generated by localised bearing surface damage as a realisation of a point process whose
inter-event times are governed by pure or inverse Gaussian mixture. The proposed approach goes one step
further by removing the limitation of constant and known operating conditions. Using a point process model



with (mixture) inverse Gaussian inter-event distribution one can construct an unified model for bearing fault
vibrations, capable of modelling both single and multiple bearing faults regardless of the speed fluctuations.

The basic of point processes, which are the basic building blocks of the model are presented in Section 2.
The definition and basic statistical properties of inverse Gaussian distribution are presented in Section 3. Appli-
cability of the proposed framework for modelling localised bearing faults is presented in Section 4. Deciding
whether to use pure or mixture inverse Gaussian distribution based on Bayes’ factor is presented in Section 5.
Finally, the simulation and experimental results are presented in Section 6

2 Basics of point processes

The point processes represent a segment of the theory of random processes that are most commonly used for
characterising random collections of point occurrences [12]. In the simplest form, these points usually represent
the time moments of their occurrences - - - ,#,#,#3,---. The properties of a point process may be specified in
several equivalent ways [13]. The most common approach is to specify the non-negative number N € Z* that
specifies the number of observed occurrences between time 0 and time 7. Another way to specify the statistical
characteristics is through the distribution of the interevent times {7,---,7,} where T; = t; — t;_;. Finally, the
approach for describing the statistical characteristics that will be used throughout this paper is based on the
frequency with which the events occur around the time moment ¢ with respect to the history of the process up
to that particular moment .7%. This statistical property is usually called conditional intensity function A (¢, 7).

For the corresponding conditional density function f(¢|.7) one can also define its corresponding cumula-
tive function F (¢|.74). Consequently the conditional intensity function can be defined as:
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As shown in Eq. (1), this function depends on both the current time ¢ as well as the complete point process
history up to that moment .777.

A further generalisation of this concept is the class of renewal point processes [21]. Similarly like in the
Poisson process, the interevent times of such processes are independent and identically distributed (i.i.d.) but
with arbitrary distribution f(¢) supported on semi-infinite interval [0, 4+o0), i.e. f(r) =0 for ¢ < 0. Consequently,
the occurrence of a new event becomes dependent only on the time since the previous one.

One can proceed even further by removing the condition of independence of the interevent intervals. If
the interevent intervals {X,} form a Markov chain where the length of the X, ; depends only on the length of
the previous interval X, one obtains a so-called Wold process [13]. By modeling different transition kernels
of the Markov chains one can model various types of point processes [14]. The form of the transition directly
determines the form of the conditional intensity function [4]. Therefore, one can define the most suitable
transition form of the governing Markov chain that will fit the observed random process. At the same time
there is an equivalent opportunity of fitting a specific form of governing chain with respect to an observed
history of an arbitrary point process. Such an identification procedure can be implemented by employing well
established methods from the area of hidden Markov models.

3 Pure and mixed inverse Gaussian distributions

3.1 Pure inverse Gaussian distribution

Let a stochastic process a(t) be
at) =vi+c*W(t), v>0, 2)

where V is the positive drift, o2 is the variance and W (t) is Wiener process [23]. Schrodinger [28] showed that
the first passage time of the process (2) over a fixed threshold a follows the Inverse Gaussian distribution [18]:
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Since the parameters (1 and A in (3) are time invariant, the resulting stochastic process is stationary. A simple
realization of such a process is shown in Figure 1.
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Figure 1: Simulated realisation of the stochastic process (2). The time intervals ¢#; are distributed by inverse
Gaussian distribution (3)

3.2 Statistical characteristics of inverse Gaussian renewal process

Since the Inverse Gaussian renewal process will be the basis of our model we will derive the necessary
statistical properties. Besides the conditional intensity function and the inter-event times distribution, a point
process can be analysed through its counting process N i.e. the probability distribution py(z) of observing N
consecutive events within a time interval [fo,), where usually 7o = 0. In order to derive the distribution py(r)
one has to calculate the joint probability distribution p(fo,t1,- - ,fy).

Firstly, the probability of a single event occurring up to time #; is p;(f;) = p(t1), where p(¢) is the probability
distribution of a single event. The probability of observing N events up to time ty is:

N
pN(ty) :/o PN—1(tn=1)p(tn —tn—1)dtn—_1, 4

where p(ty —ty—1) is the inter-event probability distribution. The Eq. (4) is a convolution of two p.d.f. defined
on the non-negative real line, since both #, > 0 and ¢, > #,_1, and it can be easily calculated using the Laplace
transforms of both py_; () and the distribution of inter-event times f(z):

PLN(S) = pLa-1(9)fi(s) = /1 (5), (5)

where pry_1(s) = ZL{pn-1(t)}, fr(s) = L{f(t)} and £{-} stands for the Laplace transform.
In case of inverse Gaussian inter-event times the Laplace transform fy (s) of (3) is:

2
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Calculating then the .2~ 1{ N (s)} we obtain [34]:

f(e) = N“exp{—(v“w}. @
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3.3 Mixed inverse Gaussian distribution

When modelling data generated by Wiener process (2) there are many situations in which parameters p
and A in (3) should be considered as random variables. Under such circumstances, the distribution of the first
passage time can be described by inverse Gaussian mixtures [37]. Physically more sound is to allow the positive
drift v in (2) to vary randomly according with some pre-defined distribution. In order to keep the relation with
the positive drift v more clearly visible, Desmond and Chapman [16] re-parametrized (3) by setting § = 1/u:

A A(5t—1)2
f(t;6,k):\,ﬁexp <—(t2t)>, (8)



where t > 0,8 > 0,1 = a*/c>.
In such a form the parameter 9§ is linearly related to the positive drift v in (2). By allowing 0 to be random
variable with distribution pg(8), the marginal distribution reads:

W1:0) = [ £(:218)p5(8)45, ©

where 0 is the vector comprising of A and all hyper parameters of ps(6).

4 Bearing fault detection by means of inverse Gaussian models

Bearing faults are surface damages that occur on the bearing elements. Each time when a rolling element
passes over the damaged surface, a specific vibrational pattern is generated directly connected to one of the
bearings eigenmodes. Usually, under constant operating conditions the generated vibrations are modeled as
[25]:

x(1) =Y Ais(t —iT — 1), (10)
4

where A; is the amplitude of the i impact, s(¢) is the impulse response of the excited eigenmode, T is the
period of rotation and 7; is random fluctuation due to slippage. Generally, 7; is modelled as zero mean normally
distributed with sufficiently small variance 62. In such a case, regardless of the variance 62, model (10) allows
for 7; to acquire sufficiently low negative values. Consequently, the occurrence of the i + 1" impact might be
modelled as if it occurs before the i one.

4.1 Using inverse Gaussian distribution

Avoiding the issues of negative time delays, present in model (10), we propose the following model of
generated vibrations:

x(t) = ZA,-s(t —1), (11)

where A; is the amplitude of the ith impact, s(¢) is the impulse response of the excited eigenmode and ¢; is the
time of the occurrence modeled as inverse Gaussian random variable. A typical vibrational pattern is shown in
Figure 2.
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Figure 2: Simulated conceptual vibrational pattern generated by damaged bearing

Due to the mechanical characteristics of the bearings, the angular distance between the adjacent rolling
elements is constant. Therefore, the angular distance between two consecutive impacts can be regarded as
constant too. So, one can easily apply the stochastic process (2) to model the angular distance traveled by a
rolling element towards the damaged surface. The threshold a in (2) is the actual angular distance between
the roller elements and Vv is directly related to the rotational speed. Consequently, the time intervals ¢; between
two adjacent excitations of s(z) can be modeled as a realization of either pure or mixture inverse Gaussian,
depending on the statistical characteristics of the rotational speed.

Pure inverse Gaussian model (3) for the inter-impact times #; should be regarded as a special case, valid
when the bearing rotational speed is “constant” i.e. there are no significant speed fluctuations. Under such
circumstances pure inverse Gaussian model (3) is applicable for localized bearing surface faults [8].



A more realistic scenario is the one where the rotational speed of a bearing varies randomly. Under such
circumstances the angle covered by a rolling element can be modeled as a realization of the stochastic process
(2) by allowing the positive drift v «< § to vary randomly according to the random speed fluctuations. Conse-
quently, the observed time intervals #; between two consecutive impacts can be modeled as a realization of an
inverse Gaussian mixture (21).

4.2 Single bearing fault

A crucial information when analyzing the bearing faults is the underlying shaft speed. The instantaneous
shaft speed can be obtained by differentiation of the random process (2) governing the current angle 60(7)

do(t)
dt

= Wshaft = Vshaft ~+ Osha ! (t ) ) (12)

where 7n(¢) is the governing Gaussian process. The rotational speed of each bearing component is directly
related to the speed of the rotating shaft (12) [33]. Consequently, each bearing fault is governed by a random
process of form (12) multiplied by a constant C;. This constant is determined by the geometrical characteristics
of the bearing which determine the ratio between the angular speed of the rotating ring and a specific bearing
element, i.e. k € {Inner ring, Outer Ring, Bearing Cage, Ball spin}. Consequently, each bearing fault can be
represented by a renewal process governed by Inverse Gaussian distribution with Vv = Cy V7, and 6 = Gy O 11
Consequently, the distribution of the interevent times for the kth component becomes:

2
a a
t ~IG : (13)
(Ckvshaft Cio?, ft>

4.3 Multiple localized faults

The case of multiple localized surface faults can be also described in the framework of point processes with
inverse Gaussian inter-event distribution. For that purpose one can consider a Wiener process, similar to (2),
with two barriers a and b. Starting from an initial point the time required to reach the barrier a is 77, and time to
reach the barrier b from a is 7>. [11] showed that 77 and 75 are independent inverse Gaussian random variables

defined as:
2
T, ~IG (“, “2>
v o
—a

b (b—a)2>

(14)
I ~1G ( -
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Measuring from the initial starting point reaching the threshold b can be specified as time 73 = T + 7». Since
the ratio N )
T
—’2 = — = const., (15)
K O
the time 73 is also inverse Gaussian random variable distributed as [11]:
V2 (11 + p2)? )

(16)

~IG (LL1+LL2, o2

In the context of bearings, the threshold a is the angular distance of the first fault in the direction of rotation
measured from some initial point. The threshold b, on the other hand, is the angular distance measured from
the first fault in the direction of rotation.

By extending the concept of two thresholds (16) to multiple thresholds, one can model multiple localised
bearing faults by employing the generalised distribution of inter-event times [11, Chapter 11].



4.4 (Pseudo) Cyclostationarity vibrations at constant rotating speed

In cases when the rotating speed is strictly constant, the value of ¢ in (2) and (3) will become zero, hence
the distribution reduces into f(¢;v,0 = 0) = (vt —a). Consequently, the corresponding point process will be
transformed into a truly periodic sequence of impacts.

Small variations in the rotating speed can be accommodated by allowing small values of ¢ in (3). The
autocorrelation function of the stationary renewal process (11) with AT ~ IG(v, o) can be derived through its
interevent probability distribution. Using (3) as interevent probability distribution it can be readily shown that
the autocorrelation function converges to the constant value

lim R (T) = —— < oo, (17)

As already analyzed by Antoni and Randall [2], such a process can be treated as pseudo cyclostationary in cases
when o is sufficiently small, i.e. when the speed fluctuations are just a few percent.

5 Model selection

The likelihood functions (3) and (9) specify two different models M; and M, respectively that can be used
for describing the time occurrences ¢. The selection of which model is more appropriate can be performed by
using Bayes’ factor.

The application of the Bayes’ factor incorporates the concepts of parsimony, unlike the standard likelihood
which suffers from the problems of overfitting [6, 22]. For the observed data ¢ the Bayes’ factor between two

models M, and M, reads:
P(Mi|r) _ P(t|M)  P(My) (18)
P(M|t)  P(t|Mz) = P(M2)’
——

Bayesfactor

where P(M,) and P(M,) are prior distributions associated with each model.
The two likelihoods entering the Bayes’ factor can be calculated by integrating over the complete set of
parameters as:

Plb) = [ £(1l6r. 1) p(61]31) ey
(19)
P(t|M>) = /h(t\@g,Mz)p(62|M2)d62,

where f(7|6) is defined by (3), h(2|6,) is defined by (9) and 6, and 6, are their corresponding parameter sets.

5.1 Specification of the prior ps(9)

In order to complete the calculation of the Bayes’ factor (18), one has to specify the distribution of the
random positive drift § in (9). One possible model of the drift fluctuations, similar to the one specified by [17],
reads:

8 =d+¢, where e ~ 4 (0,63),d > 0,8 > 0. (20)

For cases when the parameter 65 = 0, the drift parameter d becomes deterministic, thus the mixture inverse

Gaussian (9) reduces into its standard form (3). The limitation 6 > 0 imposes additional limitation on the

distribution of € in (20). Consequently, one has to use Gaussian distribution of € truncated so that € > —d.
Using the model (20) with truncated Gaussian distribution as a prior for the speed fluctuations, the marginal



likelihood (9) becomes:

A
213(14 Aojr)

X ox A(dt —1)?
P\ 2(1+20k) @1
& d+10}
|os|+/1+Ac3t
d 9
@ (&)
where ®(-) is the cumulative function of the standard normal distribution.

The proposed speed model (20) defines random and stationary speed profile. When necessary, an arbitrary
speed profile can be used instead. The only problem would be to specify a proper definition of the prior pg(J)
and calculate new marginal likelihood (21).

Finally, it has to be emphasized that the modeled parameter in (20) is the standard deviation o instead of
the variance. By modeling through the variance an additional limitation will be imposed i.e. 6(% > 0. Such a

parametrization introduces a limitation since the parameter under null hypothesis G(% =0 lies on the limit of the
acceptable region. Therefore standard likelihood tests become inapplicable [20, Chapter 5].

il(t;)tacﬁad) =

6 Experiments

The proposed model based on mixture of inverse Gaussian distribution of the inter-event times was evalu-
ated on simulated vibration signals. The signals were generated using the dynamic bearing model developed by
[27] enhanced with the EHL (Elastohydrodynamic Lubrication) model developed by [30, 31]. The simulated
bearing had localized surface fault on the outer ring. The fault was simulated to be 2° wide and has average
surface depth of 30um.

Simulations were performed using several different speed profiles according to the model (20) with mean
value d = 38 Hz. The standard deviation 65 changed from 0% up to 10% of the mean speed d.

6.1 Detection of impacts times

The main information required for the application of proposed inverse Gaussian based models are the time
intervals between two consecutive impacts. Therefore, the first step in the analysis is the detection of impact
times. In our approach, the detection of impact times was performed using wavelet transform thresholding.
The main parameter that has to be selected is the mother wavelet. Schukin et al. [29] suggested that for signals
containing repetitive impulse responses, an optimal detection of impacts can be performed by using mother
wavelet that will closely match the underlying vibrational patterns. However, Unser and Tafti [35] provided
thorough analysis that the crucial parameter for sparse wavelet representation of signals containing repetitive
impulse responses, is the number of vanishing moments of the mother wavelet rather then the selection of the
“optimal” mother wavelet that will closely match the underlying signal. Therefore, by selecting a wavelet with
sufficiently high number of vanishing moments one can sufficiently accurately analyze vibrational patterns
containing the impulse responses from the excited eignemodes regardless of their variable form due to the
changes of the transmission path. The schematic representation of the impact detection process is shown in
Figure 3.

In our approach, the generated vibrations were analyzed using Daubechies 10 mother wavelet [15]. For
our particular system such a number of vanishing moments has shown to be sufficient for accurate impulse
detection.

6.2 Numerical calculation of the Bayes’ factor

Having the impact times #; the next step is to calculate the Bayes’ factor by calculating the marginal distribu-
tions (19). The marginal likelihoods were calculated using Monte Carlo integration. Since the model selection
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Figure 3: Detection of impact times using wavelet as differential operator

depends on the standard deviation o5 (not the variance Gg), the selected prior was so-called folded non-central

t distribution which reads [19]:
1 /05\2 —(r+1)/2
Gs5) o< (14— ( 7) , 22
p(0s) < (2 > (22)
where A is scale parameter and 7y represents the degrees of freedom. The prior for the mean value d in (20) was

chosen to be uniform in sufficiently wide interval. The prior for the remaining parameter A = 1/6? in (2) was
also chosen to be uniform in the interval that contains 2% of initial speed fluctuations due to slippage [25].

6.3 Experimental results

One realization of the speed fluctuations, modeled according to (20) with d = 38 Hz, is shown in Figure 4.
The speed fluctuations are smooth but sufficiently fast. Consequently even during a single bearing revolution
the rotational speed varies.
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Figure 4: A typical speed fluctuation profile

For small speed deviations o5 < 0.5% of the mean speed value d, the Bayes’ factors (19) overwhelmingly
favor simpler model (3) i.e. pure inverse Gaussian distribution of the inter-event times. For speed fluctuations
with 65 > 0.5% the Bayes’ factors favor mixture inverse Gaussian model for the inter-event times. Changes of
the Bayes’ factor with respect to the changes in the speed fluctuations o5 are shown in Figure 5.

Such results are somewhat expected since under small speed fluctuations pure inverse Gaussian distribution
of the inter-event times sufficiently well describes the observed impact times. At the same time, due to the
principle of parsimony, the simpler model is preferred. The cost of more complex model becomes justified
when the speed fluctuations become more intense.

6.4 Comments on results

The effectiveness of the proposed approach becomes apparent if one compares it with other methods. Due
to the random speed fluctuations, the standard spectral methods are inapplicable and the only choice is time-
frequency analysis of the signal. Therefore, we calculated the wavelet transform of the envelope of the gener-
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Figure 5: Changes of the Bayes’ factors for different o

ated vibrations, which is shown in Figure 6. One can easily notice that the envelope contains some patterns in
the vicinity of 90 Hz. However, the patterns exhibit no particular structure and it is quite difficult to draw any
conclusions from such a time-frequency plot.
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Figure 6: Wavelet transform of the envelope of the generated vibrations

The analysis of the impacts as a realization of a point process with pure or inverse Gaussian mixture offers
a framework for proper statistical testing about the origin of the observed events. Testing whether the observed
impacts are related to a specific angular position is fairly straightforward. Furthermore, the same analysis offers
an insight about the possible mixing distribution, i.e. the distribution of the variable rotational speed.

7 Conclusion

The experimental results show that the specific vibrational patterns generated by bearings with surface faults
can be treated as a realization of a point process whose inter-event times are distributed according to either pure
or inverse Gaussian mixture. The pure inverse Gaussian distribution is applicable for the special case when
fault bearings operate under constant rotational speed. The inverse Gaussian mixture, on the other hand, is a
general solution applicable also for modeling the inter-impact times of faulty bearings operating under variable
rotational speed. Finally, unlike the commonly adopted models for bearing vibrations, the proposed model is
inline with the physical limitations by modeling random time fluctuations with distribution with support on
interval (0, ).

The application of the proposed approach on acquired vibrations starts by calculating the time intervals be-
tween adjacent impacts through the wavelet coefficients calculated from the generated vibration signals. When
the observed impacts are generated by a phenomenon that occurs on regular angular intervals, the correspond-
ing inverse Gaussian model can be employed. Determining the validity of such a claim can be performed by
a straightforward calculation of the Bayes’ factors. This approach is applicable to both constant and variable
operating conditions.
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