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Abstract 
Vibro-acoustic signatures are widely used for diagnostics of rotating machinery. Vibration based automatic 

diagnostics systems need to achieve a good separation between signals generated by different sources. The 

separation task may be challenging, since the effects of the different vibration sources often overlap.  

In particular, there is a need to separate between natural frequencies of the structure and excitations resulting 

from the rotating components (signal pre-whitening), and there is a need to separate between  signals 

generated by asynchronous components like bearings and signals generated by cyclo-stationary components 

like gears. Several methods were proposed to achieve the above separation tasks. The present study 

compares between some of these methods. For pre-whitening the study compares between liftering of the 

high quefrencies and adaptive clutter separation. The method of adaptive clutter separation is suggested in 

this paper for the first time.  For separating between the asynchronous and the cyclo-stationary signals the 

study compares between two methods: liftering in the quefrency domain and dephase.   

The methods are compared using both simulated signals and real data.  

 
1 Vibration signals in rotating machinery 

The diagnostic of rotating machinery via vibro-acoustic signatures requires a separation of signals 

excited by different rotating components. Some of the rotating components (e.g. gears) excite high vibration 

levels that are spread over a wide frequency band. These high vibration levels may mask other rotating 

components which excite lower level of vibrations. Therefore, in many cases, e.g. bearings, and especially 

when the diagnostic is automatic, the separation task cannot be achieved by frequency separation alone. In 

the case of bearings, the generated signals are relatively weak, often at high harmonics of the bearing tones. 

These signals may be masked by gears or blade pass frequencies. 

A typical vibration signal measured on rotating machinery such as a gearbox or a jet engine is composed 

of several types of signals excited by the basic rotating components: gears, shafts, bearings, and 

rotors/blades. These signals arrive to the sensor through the structure of the machine and are therefore 

convolved by an impulse response function, reflecting the transmission path.  

Shafts generate vibrations at several harmonics of the rotating speed with the highest amplitude at the 

first harmonic. The amplitudes depend on the balancing and alignment of the shaft. 

Gears generate vibrations at several harmonics of the gearmesh rate with a certain amount of amplitude 

and frequency modulation of both gearwheel rotating speeds. The extent of modulation depends on the gear 

status. The frequency modulation generates a relatively large amount of sidebands that spread over a wide 

frequency band. 

Rotor blades generate several harmonics of the blade pass frequency which is the harmonic of the shaft 

speed corresponding to the number of blades on the rotor. 

Bearings with localized faults generate shocks for every contact occurrence with the deteriorated surface. 

The shocks excite resonances of the structure between the bearing and the sensor. The shock amplitude is 

modulated when the fault is on a rotating surface that is subject to variations of load and/or changes of the 

transmission path to the sensor. When assuming no slippage, the rate of shock occurrences (kinematic 

frequencies) can be calculated from the bearing geometry. The kinematic frequencies are non-integer 

multiples of the rotating speed of the shaft. Due to slippage, the shock rate may change randomly with about 
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1-2% tolerances around the kinematic rates. Therefore the signals generated by a faulty bearing are 

asynchronous to the rotating speed. 

The signals generated by shafts, gears and blades will be manifested in the spectrum at discrete 

frequencies which are integer multiples of the corresponding shaft speed, i.e. synchronous to the rotating 

speed. All these signals are strong compared to the signals generated by defective bearings. 

The measured signal is thus composed of a superposition of signals corresponding to the rotating 

components multiplied in the frequency domain by a structural transfer function. 

 

2 Separation of discrete frequency noise 

In bearing diagnostics, one of the first tasks is to separate the bearing signals from the discrete frequency 

noise [1], [2], [3], i.e. signals generated by shafts, gears, rotors, etc. Several methods were proposed for this 

task [2]: linear prediction, dephase (removal of the time synchronous average) [1], [3], discrete/random 

separation, and liftering in the quefrency domain. The goal is to remove the synchronous elements of the 

vibration signal, leaving the asynchronous vibrations, which are usually related to the structure and the 

bearings. 

In this study two methods for separation of discrete frequency noise are compared, dephase and filtering 

in the quefrency domain [2]. These two methods enable removal of specific peaks synchronous to specific 

shafts.  

 

2.1 Dephase 

The method is based on removal of the phase averaged signal (or the synchronous time average – STA) 

[1], [3]. The synchronous time average is the mean value of segments representing one rotation of a shaft. 

The STA removes the asynchronous components by averaging the resampled signal over a cycle of rotation. 

All the signal elements that are not in phase with the rotating speed are eliminated, leaving the periodic 

elements represented in one cycle, i.e. the elements corresponding to harmonics of the shaft rotating speed.  

In the cycle domain the STA 𝑦𝑛  corresponding to rotation frequency 𝑅1 of the cycle history 𝑥 is 

calculated as follows: 

 

𝑦𝑛 ≔
1

𝑀
 𝑥𝑛+𝑚𝑁

𝑀−1

𝑚=0

      𝑛 = 1, ⋯ , 𝑁 (1) 

 

where 𝑁 = 1/𝑅1 and 𝑀 is the number of cycles in the signal. Note that 𝑦 is a vector in ℝ𝑁 representing 

a single cycle. 

The phase average 𝑦 is replicated in order to get a vector of the same size as 𝑥 (the resampled signal): 

 

 𝑧𝑛 = 𝑦𝑛 mod 𝑁      𝑛 ∈ ℕ (2) 

 

Now removing the phase average, thereby generating the dephased signal, removes all the effects which 

are synchronous with the rotating speed 𝑅1. 

 

 𝑥 = 𝑥 − 𝑧 (3) 

 

The basic dephase algorithm removes the STA of the entire signal and is therefore appropriate for 

stationary signals. Its performance depends on the accuracy of the measurement and the accuracy of the 

rotating speed analysis.  

The adapted dephase [6] removes the STA in running frames. It is able to remove the STA from non-

stationary signals where the amplitudes of the synchronous elements may change (due to varying rotating 

speeds and loads). The recommended frame size depends on the amount of variations in operating conditions 

such as load and rotating speed.  

In some cases, where several asynchronous shafts exist, the procedure needs to be repeated for each shaft 

rotating speed separately. Removing the STA of shaft 𝑅1 from the signal resampled by 𝑅2 is a little trickier, 

since the 𝑅2-resampled signal is not periodic with any period associated with 𝑅1.  

Instead of taking the raw data, 𝑅1 dephased signal is resampled by 𝑅2. This signal already had the 𝑅1 

effects removed from it. After resampling the signal, the elements that are synchronous with 𝑅2 can be 



3 

removed. This process is repeated with all shafts. Finally the signal is resampled back to the desired cycle 

domain (𝑅𝑘). 

When 𝐾 STAs corresponding to synchronous shafts 𝑅𝑘 , 𝑘 = 1, … , 𝐾 (e.g. shafts of a gearbox) need to be 

removed, the procedure can be simplified as follows:  

 The raw signal is resampled only once according to one of the shafts rotating speed 𝑅1. It is 

recommended to start with the fastest shaft. 

 The STA corresponding to 𝑅1 is removed (dephase by 𝑅1) 

 For all 𝑘 − 1 remaining shafts: 

o The dephased signal is interpolated to another shaft 𝑅𝑘 , 𝑘 = 2,… , 𝐾 with a sampling rate 

proportional to the actual sampling rate. If the resampling was done for the fastest rotating 

shaft, a linear interpolation will be sufficient. 

o The STA corresponding to 𝑅𝑘  is removed. 

 The dephased signal is reversed to the desired cycle or time domain using interpolation. 

When applying the simplified procedure, the algorithm computation load is significantly reduced.  This 

is because the most demanding task in the sequence is resampling, which usually applies both linear 

interpolation and spline interpolation. 

The spectrum of a dephased signal is expected to reveal peaks related to the asynchronous tones of 

deteriorated bearings and to the structural natural frequencies.  

 

2.2 Liftering in the quefrency domain 

The most general definition of cepstrum 𝐶(𝜏) (complex cepstrum) [2], [5] is: 

 

 𝐶 𝜏 = ℱ−1 𝑙𝑜𝑔 𝑋(𝑓)  ;  ∀𝑋 𝑓 = ℱ 𝑥(𝑡) = 𝐴(𝑓)𝑒𝑗𝜑 (𝑡) (4) 

 

when  

 𝑙𝑜𝑔 𝑋 𝑓  = 𝑙𝑜𝑔 𝐴(𝑓) +  𝑗𝜑(𝑡) (5) 

 

and  when 𝑥 𝑡  is the the time or cycle history and 𝑋(𝑓) is the respective Fourier transform (in the 

frequency or order domain) . 

The power or real cepstrum is defined as the inverse Fourier transform of the log power spectrum. 

 

 𝐶 𝜏 = ℱ−1 𝑙𝑜𝑔  𝑋(𝑓)   = 𝐴(𝑓) (6) 

 

The difference between the real and the complex cepstrum is that the complex cepstrum contains the 

phase information from the spectrum allowing reconstruction of the signal in the time domain while the real 

cepstrum allows only reconstruction of the power spectrum. The drawback of the complex cepstrum is that 

the phase should be unwrapped before the inverse Fourier transform. This is not feasible for a random signal 

with discontinuous phase and therefore not applicable for vibration signals of rotating machinery.  

The abscissa of the cepstrum, 𝜏, has units of time but it is called quefrency. All the terminology related to 

cepstrum is a result of syllables interchange in the regular terms: harmonics become rhamonics, filtering is 

called liftering, etc. 

A relatively new method to reconstruct the signals while using the real cepstrum was proposed by R.B. 

Randall and J. Antoni [5]. The idea is to keep the phase of the Fourier transform, then to calculate the real 

cepstrum and when reversing from the frequency domain to the time domain to reuse the phase of the 

Fourier transform (see Figure 1). This method allows usage of cepstrum for separation of different parts of 

the spectrum in vibration of rotating machinery. It takes advantage of the fact that, because the Fourier 

transform of the logarithm, the multiplication in the frequency domain become addition in the quefrency 

domain and it permits the liftering of such terms. The liftering can be performed using any type of window. 

The cepstrum combines families of sidebands or any multiple peaks with similar distances in the 

spectrum into several rhamonics of peaks in the quefrency domain. Therefore by removing the rhamonics 

from the cepstrum, these families of peaks are removed from the spectrum. The cepstrum can be calculated 

based on the frequency spectrum or based on the order spectrum (the spectrum of the signal after phase 

resampling). The signal that is reconstructed after removing all the families of sidebands in the order 

spectrum, i.e. removing the modulation of the tooth gearmesh, contains only the asynchronous parts of the 

original signal (mainly bearings and transmission path effects). 
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The efficiency of liftering the rhamonics corresponding to a family of equidistant peaks in the spectrum 

depends on the frequency/order resolution of the spectrum. Therefore it is preferable to use large frames, i.e. 

long periods of time. Liftering is most effective when the peaks in the spectrum are sharp and of high 

amplitude. Variations of the rotating speed may smear the peaks, affecting the ability to remove the discrete 

frequencies. Therefore it is recommended to use the order domain spectrum where the peaks are sharp. 
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Figure 1: Flow chart of quefrency liftering 

 

3 Transmission path estimation 

After removal of the discrete frequency "noise", the weak bearing signal may be still masked in some 

frequency bands due to the transmission path effect that may attenuate some frequency bands and/or amplify 

others. Division of the spectrum after removal of the discrete frequencies by the transfer function is expected 

to whiten the spectrum. The whitened signal will contain mainly the bearing excitations. 

In order to estimate the transfer function of the transmission path, all peaks corresponding to the rotating 

components should be removed, i.e. the discrete frequencies related to shafts, gears, and blades as well as the 

bearing tones. 

The determination of the transmission path transfer function is valuable also for detection of structural 

changes, or for "whitening" the signals of other components. The transfer function should be evaluated in the 

frequency domain when the goal is to detect structural changes and in the order domain when the focus is on 

bearing diagnostic. 

There are several algorithms that can be used to estimate the transmission path transfer function [2]: 

minimum entropy deconvolution, liftering of the high quefrencies [5] and a new algorithm that performs an 

adaptive clutter separation of the spectrum. 

The study compares two methods, i.e. liftering of high quefrencies and adaptive clutter separation. Both 

methods allow the prewhitening of the signal for bearing tones enhancement and the estimation of the 

transmission path effect. 

 

3.1 Liftering of high quefrencies 

The liftering of high quefrencies [5] is taking advantage of the reconstruction of the signal after editing 

the real cepstrum and reversing to the time domain using the phase of the Fourier transform (the procedure 

was described in 2.2). Since estimation of transmission path requires removal of all the sharp peaks in the 

spectrum, this will correspond to liftering all high quefrencies, i.e. windowing the cepstrum at low 

quefrencies. 

When the signal is stationary with a relatively constant rotating speed this can be done by calculating the 

cepstrum based on the frequency spectrum. When analyzing a transient with varying rotating speed it would 

be required to calculate the cepstrum based on the order spectrum and then, after reconstruction of the signal, 

to resample it back to the time domain. 

 

3.2 Adaptive clutter separation 

The algorithm for adaptive clutter separation (ACS) is described in Figure 2. In essence, the algorithm 

separates between the sharp peaks in a spectrum and the "background noise". It was designed for peaks 

removal from spectra but it can be used for any signal. The algorithm estimates the smoothed "background 

noise" of a spectrum by calculating a configurable percentile of spectrum values in overlapping dynamic 
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blocks. It is assumed that the smoothed "background noise" represents the transmission path effects and the 

peaks are related to rotating components. The algorithm is expected to be most effective when the spectrum 

contains numerous sharp peaks that can be differentiated from the background. The block size increases in 

proportion to the rotating speed variations or can be kept constant. The change in the block size was designed 

to avoid influence of smeared peaks at high frequencies on the evaluated transmission. 

 

Interpolate      

Raw vibration data Rotating speed – R

Spectrum S
Initialize

Minimum block size - BS

Do for each block n

Mean/percentile      and frequency mid-point

Next block size                                                  

Starting point of next block      

Transmission                             

Whiten                 

 
 

Figure 2: Flowchart of the ACS algorithm 

 
The adaptive clutter separation algorithm can be applied in frequency or in order spectra. In the 

frequency domain it is usually applied with a dynamic block size and in the order domain with a constant 

block size. 

The whiten signal can be constructed by applying the procedure described in Figure 3. This procedure 

was inspired by the method for reconstruction of signals which was proposed in [5]. 
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Figure 3: Signal whitening with ACS algorithm 

 

4 Data analysis procedure 

The methods were compared using two sets of data: a dataset of simulated signals and an actual data 

dataset measured in a gearbox (PHM’09 challenge labeled data set). The simulated dataset was selected 

because it allows full control of the data elements. In this study the evaluation of the ability to isolate the 

transmission path effects is achievable only with the simulated dataset. The PHM'09 dataset was selected 

because it contains data measured on a gearbox with a large number of faults in the gears and bearings that 

challenge the separation capabilities of the evaluated methods.  
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4.1 The simulated dataset 

The following model is used to simulate the vibrations signal. Let 𝑅1 , … , 𝑅𝐾  be the rotating speeds of the 

simulated shafts and denote by 𝛷1 , … , 𝛷𝐾 the respective phase functions. For each shaft 𝑘 let 𝑝𝑘,1 , … , 𝑝𝑘,𝑀𝑘
 

be the relative frequencies (orders) of the parts which are mounted on shaft 𝑘. Denote by 𝜃𝑘,1 , … , 𝜃𝑘,𝑀𝑘
 the 

phase shifts of these rotating parts. The phase of each rotating part can be described by 𝛼𝑘,𝑖(𝑡) =
𝑝𝑘,𝑖𝛷𝑘(𝑡) + 𝜃𝑘,𝑖 .Then the signal is described by:  

 

 

𝑥 𝑡 =   𝐴𝑘,𝑖 cos𝛼𝑘,𝑖 𝑡 + 𝑛(𝑡)

𝑀𝑘

𝑖=1

𝐾

𝑘=1

 (7) 

 

where 𝑛(𝑡) is white noise and 𝐴𝑘,𝑖 is the amplitude of a rotating part signal. 

In a real machine, the rotating parts excitations 𝑋(𝜔) give rise to responses at the sensor through the 

machinery’s structure transfer function 𝐻(𝜔) which amplifies each frequency range differently 𝑌(𝜔) =
𝑋(𝜔)𝐻(𝜔). The resulting signal is: 

 

 

𝑦 𝑡 = 𝑥 𝑡 ∗ 𝑕 𝑡 =    𝐴𝑘,𝑖 cos 𝛼𝑘,𝑖 𝑡 + 𝑛(𝑡)

𝑀𝑘

𝑖=1

𝐾

𝑘=1

 ∗ 𝑕(𝑡) (8) 

 

The vibration signal was composed using two sets of rotating speeds (𝑅1 and 𝑅2) corresponding to 

asynchronous shafts. The signal included components synchronous with rotating speed 𝑅1 with different 

amplitudes at harmonics 1, 2, 3, 19, 38, 57. It also included components synchronous with rotating speed 𝑅2 

with different amplitudes at harmonics 1, 2, 3, 17, 32, 34, 51, 64, 96. In addition gear like components with 

gear meshes at order 61 and 183 of 𝑅2 and 83 of 𝑅1 with FM (frequency modulation) by the respective 

rotating speed were added. 

All the amplitudes of the synchronous elements (𝐴𝑘,𝑖   for 𝑘 = 1,2 corresponding to 𝑅1 and 𝑅2) were 

constant. The added white noise SNR was 10 dB. Shaft 𝑅1 and 𝑅2 rotating speeds were on average 20Hz and 

40Hz respectively with added white noise of 𝜎~0.02𝐻𝑧. Similar signals were simulated four times, i.e. two 

records of the same situation and two sensors (named s3 and s5). In each record of sensor s5 asynchronous 

elements simulating different bearing faults have been added (see specification of the bearing tones and 

respective amplitude modulation in Table 1).  

 

 
 

Table 1: Specifications of bearing signals in the simulation data set 

 
All the simulated signals were convolved with an impulse response obtained from a Finite Elements 

model of a bearing house. Each record was simulated in two files of 10 seconds sampled at 40 kHz – the data 

set contains a total of 16 raw data files. 

4.2 Analysis of the simulated dataset 

The data set of simulated signals was used to compare both the separation of discrete frequency noise as 

well as the transmission path effect.  

 

Bearing 

tone

Natural 

freq. [Hz]

1 BSF 5.29 R2 0.03 10,392    

2 BSF1 5.29 R2 0.13 10,392    

3 BSF2 5.29 R2 0.548 10,392    

7.21 4,503      

5.29 R2 0.03 10,392    

5.29 R1 0.03 11,432    

7.21 4,503      

8.82 R2 1 5,543      

6 IR1 8.82 R2 1 5,543      

7 IR2 3.00 R2 1 5,543      

8 IR3 3.00 R2 1 5,543      

Record Side bands [order]

4 Comb1

none

5 Comb2
none
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Figure 4 shows the block diagram describing the analysis process. The left branch was designed to 

compare the performance of the algorithms for estimation of the transmission path effect. The right branch 

was designed for comparison of the algorithms for discrete frequencies separation. The comparison between 

the two algorithms for discrete frequencies separation was carried out on the signal dephased in respect to 

𝑅1. Several blocks have been added to the right branch for comparison of the algorithms for transmission 

path estimation in the order domain, i.e. lifter high quefrencies and ACS. 

The spectra in the frequency domain were calculated with a resolution of 0.3 Hz. The data was resampled 

according to 𝑅1 with 4096 samples per cycle and with 2048 samples per 𝑅2 cycle. All the spectra in order 

domain were calculated with a resolution of 0.015 order. 
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Figure 4: Block diagram of the analysis of the simulation dataset 

 

4.3 PHM’09 Challenge data 

The PHM’09 data set included 280 recordings of 4 seconds each, measured on the gearbox described in  

Figure 5, using two vibration sensors (Sin and Sout) and a tachometer. All the bearings were similar. Some 

of the signals were recorded when the gearbox was in ‘spur’ configuration, and others when it was in 

‘helical’ configuration. Data were collected at 30, 35, 40, 45 and 50 Hz shaft speeds, under high and low 

loading (HL and LL). 
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Figure 5: Challenge apparatus: spur (S) and helical (H) configurations (from [4]) 
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In the challenge apparatus, in spur and helical configurations, the idler shaft (SM) and the output shaft 

(SO) rotated at 1/3 and 1/5 of the rotating speed of the input shaft (SI) correspondingly. The gear ratios 

generated overlapping characteristic frequencies. 

Table 2 summarizes the recordings of the PHM’09 data set and the damages that were present. 

 

 
 

Table 2: PHM’09 challenge dataset faults 

 

4.4 Analysis of the PHM'09 challenge data 

The data from the PHM'09 challenge was used only to compare methods for the separation of discrete 

frequencies since the transmission path effect was not known. 

Figure 6 shows the block diagram describing the analysis process. Due to the fact that the idler and 

output shaft rotated at exact multiples of the input shaft rotating speed it was not required to remove 

separately the synchronous average of the input shaft. The block diagram in Figure 6 illustrates the dephase 

method that applied resampling only once, followed by interpolation from cycles corresponding to one shaft 

to another (see detailed explanation in 2.1). 

The data was resampled according to SI with 4096 samples per cycle. All the spectra in order domain 

were calculated with a resolution of 0.015 order. 
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Figure 6: Block diagram of the analysis of the PHM'09 challenge dataset 

 

5 Results 

5.1 Discrete frequencies separation 

The comparison was performed using both the simulated dataset and the PHM'09 challenge records. The 

performance measure, 𝑝𝑟 , was defined as the percentage of removed RMS, at the harmonics of the respective 

shafts orders (9). 

 

 

𝑝𝑟 = 100  1 −  
 𝑃𝐴,𝑖 ∙ ∆𝑜𝑖∈𝐴

 𝑃𝑖 ∙ ∆𝑜𝑖∈𝐴

2

  (9) 

 

where 𝑃 is the original order spectrum in G
2
/order, 𝑃𝐴 is the spectrum obtained after application of the 

algorithm in G
2
/order, ∆𝑜 is the order spectrum resolution, and A is a set of indices corresponding to the 

removed rotating speed harmonics (of all shafts). 𝑝𝑟  was computed by both methods, dephase and quefrency 

liftering, for each data record.  

Bearings Shaft

32T 96T 48T 80T bSI bSM bSO Input Output

Spur 1 Good Good

Spur 2 Chipped Eccentric

Spur 3 Eccentric

Spur 4 Eccentric Broken Ball Good Good

Spur 5 Chipped Eccentric Broken Inner Ball Outer

Spur 6 Good Good Broken Inner Ball Outer Imbalance Good

Spur 7 Inner Good Good Good Key

Spur 8 Good Ball Outer Imbalance Good

16T 48T 24T 40T

Helical 1 Good

Helical 2 Chipped

Helical 3 Broken Comb Inner Bent 

Helical 4 Good Comb Ball Imbalance

Helical 5 Broken Good Inner

Helical 6 Good Bent Shaft Good

Good

Good

Good

Good

Case

Good

Good

Good

Good

Good

Gears

Good

Good

Good

Good

Good

Good
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The percentage of removed RMS obtained by both methods in the simulated dataset and in the PHM'09 

challenge recordings are presented in Figure 10 and in Figure 11 respectively. In the simulated dataset and in 

most of the PHM'09 records the percentage removed by dephase is above 80%. In the simulated dataset the 

method of quefrency liftering is below 80% and in PHM'09 records it is below 60%. The percentage 

removed by dephase is always higher than the percentage removed by liftering in the quefrency domain. 

 

 

 
Figure 7: Percentage of RMS removed, simulated dataset: a) sensor s3, b) sensor s5 

 

 
Figure 8: Percentage of RMS removed, PHM'09 challenge dataset, sensor Sin: a) records with rotating speed 

of 30Hz low load, b) records with rotating speed of 50Hz low load 

 
Figure 9 presents an example of the results in the order spectrum for both datasets. In this graphs it can 

be observed that all the peaks related to the gears where reduced by dephase to the level of the "background 

noise" while the level reduction of the liftering in the quefrency domain was significantly lower. 

Moreover, in Figure 9b, it can be observed that several peaks that belong to bearings remain clearly in 

the dephased spectrum despite their proximity to the gear sidebands which were completely removed 

(reduction by approximately a decade). At the same situation, the quefrency liftering succeded to remove the 

gear sidebands only partially. 

The results show that the dephase method is superior relative to the method of liftering in the quefrency 

domain.  
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Figure 9: Sections of order spectra, original spectrum – blue, liftered spectrum – green, dephase – red: a) 

simulated data set, order by 𝑅2, sensor s5, b) PHM dataset, order by SI, sensor Sin, 50Hz, high load 

 

5.2 Transmission path effects 

The transfer function was estimated using both methods of adaptive clutter separation and liftering of the 

high quefrencies, for the simulated dataset, in the frequency and in the order domain.  For analysis purposes, 

we have overlaid and visually inspected four types of graphs: the spectra of the original signal, the simulated 

transfer function, the transfer function that was estimated using adaptive clutter separation, and the transfer 

function obtained by liftering the high quefrencies (Figure 12). In addition, and in order to quantify the 

comparison results, the mean distance 𝑑𝑟  between the transfer function estimations and the actual simulated 

transfer function was calculated (10).  Let 𝑇(𝑓) be the actual transfer function, 𝑓 denoting either frequency 

or order (in our case order according to 𝑅2) and 𝑇𝐴(𝑓) be the transfer function estimated with one of the 

algorithms, the mean distance 𝑑𝑟  in dB is: 

 

 

𝑑𝑟 =
20

𝑁
  log10 𝑇𝐴 𝑓𝑖 − log10 𝑇 𝑓𝑖  

𝑁

𝑖=1

 (10) 

  

The mean distance represents the estimation error of the respective algorithms. The results in the order 

and frequency spectra are presented in Figure 10 and Figure 11 respectively. 

 

 
Figure 10: Mean distance in the order by 𝑅2 domain of the simulated dataset: a) sensor s3, b) sensor s5 
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Figure 11: Mean distance in the frequency domain of the simulated dataset: a) sensor s3, b) sensor s5 

 

 

 
Figure 12: Sections of PSDs of s5 in the simulated dataset. Original PSD – blue, Liftered spectrum – green, 

ACS – red, Simulated transfer function – cyan. a) Order spectrum by 𝑅2, b) Frequency spectrum 

 

In the order domain (Figure 10), the ACS mean distance from the actual transfer function is lower than 

1.6 dB and always lower compared to the liftering distance. For sensor s5 (Figure 10b) the mean distance of 

liftering is ~2.4 dB and the mean distance of ACS is ~1.4 dB. The performance difference is more 

emphasized for sensor s5, which contains the additional impulses of the bearings. The difference between s3 

and s5 is explained by the capability of ACS to discriminate between background and peaks. Therefore it can 

be concluded that ACS was found superior to liftering in the order domain. 

On the other hand, in the frequency domain (Figure 11) the liftering method was found superior to ACS. 

In Figure 11 the distances from the actual transfer function for each method are almost constant for the 

different simulated records with an approximate constant difference between ACS and liftering (2 dB for s3 

and 1.5 dB for s5). We attribute the poorer performance of ACS in the frequency domain to the fact that it 

was designed to separate between relatively sharp peaks and the "background noise". When the spectrum 

does not have prominent peaks over the background the algorithm performance is less satisfactory. Figure 12 

illustrates the big difference between the spectra in frequency and order domains; in the frequency domain 

the peaks are smeared and cannot be distinguished while in the order domain the peaks are sharp. The other 

important observation that can be made by inspecting Figure 12 is the fact that both algorithms of ACS and 

liftering are able to estimate and correctly track the actual transfer function. 

In summary, for finding the transfer function in the frequency domain, the liftering of the high 

quefrencies is recommended. For whitening the signal for diagnosis of rotating components in the order 
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domain, the ACS method provides better results. For this purpose, ACS can be applied in the order domain, 

and then the signal can be reconstructed in the cycles domain and interpolated back to the time domain. 

 

6 Conclusions 

The paper compared between two methods for separation of discrete frequencies noise and between two 

methods for isolation of transmission path effects.  

For separation of discrete frequencies noise, the method of dephase was found superior relative to 

quefrency liftering. In the case of synchronous shaft speeds, a modified flow of algorithms was suggested for 

efficient realization of the dephase process.  

A new method for isolation of transmission path effects, adaptive clutter separation (ACS), was 

proposed. The method was compared to cepstrum liftering. In the frequency domain, cepstrum liftering was 

found superior to ACS. In the order domain, ACS provided better results. It seems that ACS is more 

effective for prewhitening while cepstrum liftering is preferable for estimation of transmission path effects. 
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