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Abstract 
In constant speed operation, vibration signals of rotating machinery and their statistics usually exhibit 

periodicities. These periodicities can be brought out through Fourier analysis, by applying either spectral 

analysis or cyclostationary analysis. In variable speed operation, all the components whose frequencies are 

tied to the speed of the machine follow the speed variations. Looking for constant frequency oscillatory 

functions within the signal is not as relevant as in constant speed operation. Since many diagnosis tools have 

been developed based on Fourier transform, it is worth looking for equivalent tools in variable speed. The 

usual techniques consist either in segmenting the signal into slices short enough for the speed to be constant, 

or in re-sampling the signal so that the samples correspond to fixed angular positions rather than being 

temporally equi-spaced. The first method’s drawback is that the shorter the slices, the poorer the resolution 

of frequency analysis, while the second method’s drawback is that by resampling the signal, one alters the 

resonance phenomena, that are not tied to the speed of the shaft. 

Here, we propose to adapt Fourier transform to the vibration signal, rather than altering the signal for it to be 

adapted to Fourier analysis. The new tool that we propose, called Speed Transform, consists in decomposing 

the signal over a basis of elementary oscillatory functions whose frequencies follow the speed variations. It 

has been shown in [1] to have equivalent properties to Fourier transform, provided that the speed is linearly 

varying. It can be applied to the signal without any prior resampling or segmentation, which allows 

extending to variable speed operation most of the classical tools based on Fourier analysis for the constant 

speed operation. In this paper, Speed Transform is applied to the vibration signal of a roller bearing. We 

show how it allows computing under variable speed operation classical parameters such as envelope 

spectrum and spectral correlation, which then become envelope Speed Transform and Speed correlation.  

 

1. Introduction 

 

During many years, vibration analysis techniques have been applied in constant speed operation, in order 

to ensure that the vibration signals were stationary or cyclostationary. But it is not always possible to get 

some records performed in such peculiar conditions. Indeed, the machinery rotation speed cannot be set 

according to the surveillance needs. Furthermore, some damages can be revealed in non stationary operation, 

for example by exciting some resonance during a speed-up. For these reasons some techniques have been 

developed lately for the analysis of vibration signals in non stationary operation. In stationary operation the 

Fourier transform is widely used to put in evidence some repetitive phenomena tied to the presence of a 

damage on a rotating part. In non stationary operation, tracking strictly periodic components is not relevant 

any more. Among the techniques adapted to variable rotation speed, some are based on filtering, but others 

still rely on Fourier transform, though requiring some alteration either of the signal or of the analysis tool. 

One can split the signal into slices and suppose the rotation speed is constant over the duration of a slice, or 

resample the signal for it to be expressed versus rotation angle rather than time. The drawback of the first 
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technique is a worsened frequency resolution, while resonance phenomena are altered by the latter. Some 

new techniques consisting in a modified transform have been proposed. The “Velocity Synchronous Discrete 

Fourier Transform” [2] performs angular resampling and Fourier transforming at the same time, while the 

“Time Variant Discrete Fourier Transform” [3] is a modified (non-orthogonal) Fourier transform whose 

kernel follows the speed variations. The tool applied here consists in calculating a Fourier transform whose 

kernel follows speed variations over a duration sufficient to ensure orthonormality, provided that the speed 

variations are linear. In section 2 we first study what happens to roller bearing vibrations in variable rotation 

speed through calculations performed over a simplified model. We deduce from these calculations which 

components of the autocorrelation function follow the speed variations and propose to extend classical 

analysis techniques such as envelope spectrum and spectral correlation through the use of Speed Transform 

instead of Fourier Transform. Two new analysis techniques are derived, called Envelope Speed Transform 

and Speed Correlation, and applied to simulated signals fitting to the simplified model. In section 3 these 

new tools are applied first to a simulated roller bearing vibration signal and then to a real-life one.  

 

2. Simplified model of the bearing vibration signal in variable speed 

operation 

2.1 Signal model in constant speed operation 

In constant speed operation, the vibration signal of a damaged roller bearing is mainly produced by 

shocks that excite the mechanical structure. These shocks occur at periodic intervals, the periodicity being 

altered by some jitter due to the movements of the rollers within the cage. Such a model can be described as 

follows [4]. 

 𝑠 𝑡 = 𝑚 𝑡  𝛿𝑇𝑑  𝑡 ∗ ℎ 𝑡   (1) 

 𝑚 𝑡  is an amplitude modulation, periodic at the rotation speed frequency, 

 𝑇𝑑  is the period of the shocks, 

 𝛿𝑇𝑑 𝑡 =  𝛿 𝑡 − 𝑛𝑇𝑑 
+∞
𝑛=−∞  is a pulse train standing for the exciting shocks. Some random 

jitter can affect the pulse times 𝑛𝑇𝑑 , 

 ℎ 𝑡  is the response of the mechanical structure. 

 

This can be viewed as a sum of complex exponentials with complex random amplitudes. The frequencies 

of these periodic waves are all the possible combinations of the damage shocks frequency (𝑓𝑑 = 1 𝑇𝑑 )  

harmonics and the rotation frequency (𝑓𝑟)  harmonics 𝑓𝑘1 ,𝑘2
= 𝑘1 𝑓𝑑 +  𝑘2 𝑓𝑟  with   𝑘1,𝑘2 ∈ 𝑍2 due to the 

modulation 𝑚 𝑡 . The vibration signal can thus be written as follows. 

 

 𝑠 𝑡 =   𝑎𝑘1 ,𝑘2
𝑒2𝜋𝑗 𝑓𝑘1,𝑘2  𝑡+∞

𝑘2=−∞
+∞
𝑘1=−∞  (2) 

The amplitudes 𝑎𝑘1 ,𝑘2
 are complex and random. They take into account: 

 the resonance of the structure, 

 the phases of the oscillatory functions, 

 the jitter on the shocks period. 
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These amplitudes are usually correlated, due to the fact that all these oscillatory components are 

produced by the same physical phenomenon. As a consequence, both envelope spectrum and spectral 

correlation exhibit spectral lines when applied to such a signal [5]. They thus are classically used as analysis 

tools in order to detect the characteristic shocks produced by any damage and diagnose the roller bearing.  

 

2.2 Extension of a simplified model to variable speed 

In order to study from a theoretical point of view what happens in time-varying operation, the 

autocorrelation of the signal should be calculated. Indeed, the spectral correlation is obtained from the 

autocorrelation function by applying Fourier transform over both time and time-lag, while the envelope 

spectrum is obtained by applying Fourier transform over time for zero time-lag. A simplified model given in 

Eq (3) will be studied here in order to avoid heavy calculations.  

 

 𝑠 𝑡 = 𝑎1𝑒
2𝜋𝑗  𝑓1 𝑢 𝑑𝑢

t

0 + 𝑎2𝑒
2𝜋𝑗  𝑓2 𝑢 𝑑𝑢

t

0  (3) 

The respective complex random amplitudes 𝑎1 and 𝑎2 of the two components can be correlated to each 

other or not. Their respective frequencies are time-varying, For instance, they can follow the rotation 

frequency variations. 

The autocorrelation function is defined by 𝑅𝑠 𝑡, 𝜏 = 𝐸 𝑠 𝑡 𝑠∗ 𝑡 − 𝜏   where E[...] stands for ensemble 

averaging and * for complex conjugate. The calculation of the autocorrelation of the signal defined by Eq. 

(3) is given in appendix. In what follows, the frequencies of the two components are supposed to be linearly 

varying and equal to 𝑓1 𝑡 = 𝛼1𝑡 + 𝛽1 and 𝑓2 𝑡 = 𝛼2𝑡 + 𝛽2. 
 

In the peculiar case of zero time-lag (𝜏 = 0) it is equal to: 

 

 𝑅𝑠 𝑡, 0 = 𝐸  𝑠 𝑡  2 = 𝐸  𝑎1 
2 + 𝐸  𝑎2 

2 + 2 𝑅𝑒 𝑎1𝑎2
∗ 𝑐𝑜𝑠  2𝜋  

 𝛼2−𝛼1 

2
𝑡2 +  𝛽2 − 𝛽1 𝑡   (4) 

The autocorrelation function depends only on time and follows the variations of 𝛼0 𝑡 = 𝑓2 𝑡 − 𝑓1 𝑡 . 

In constant speed operation, it would be periodic at a fixed frequency 𝛼0 = 𝑓2 − 𝑓1 and the signal would be 

cyclostationary at frequency 𝛼0. The envelope spectrum would exhibit a spectral line at cyclic frequency 𝛼0. 

We propose to extend this technique to the variable speed case by applying to the signal an Envelope Speed 

Transform (EST). Provided that both 𝑓1 𝑡  and 𝑓2 𝑡  are proportional to the rotation frequency variations 

𝑓𝑟 𝑡 , the EST should exhibit an order line at the order K such that 𝛼0 𝑡 = 𝐾𝑓𝑟 𝑡 . 

 

In the most general case the autocorrelation can be decomposed into two auto-terms 𝑅1 𝑡, 𝜏  and 𝑅2 𝑡, 𝜏  

and two cross-terms 𝑅2,1 𝑡, 𝜏  and 𝑅1,2 𝑡, 𝜏 , whose expressions are given below. 

 

  
𝑅1 𝑡, 𝜏 = 𝐸  𝑎1 

2 𝑒
2𝜋𝑗  𝛼1𝑡𝜏+𝛽1𝜏−

𝛼1
2

 𝜏2 

𝑅2 𝑡, 𝜏 = 𝐸  𝑎2 
2 𝑒

2𝜋𝑗  𝛼2𝑡𝜏+𝛽2𝜏−
𝛼2
2

 𝜏2 

  (5) 

  
𝑅2,1 𝑡, 𝜏 = 𝐸 𝑎2𝑎1

∗  𝑒
2𝜋𝑗  

 𝛼2−𝛼1 

2
 𝑡2+ 𝛽2−𝛽1 𝑡  𝑒

2𝜋𝑗  −
𝛼1
2

 𝜏2+𝛽1𝜏  𝑒2𝜋𝑗𝛼 1𝑡𝜏

𝑅1,2 𝑡, 𝜏 = 𝐸 𝑎1𝑎2
∗  𝑒

2𝜋𝑗  
 𝛼1−𝛼2 

2
 𝑡2+ 𝛽1−𝛽2 𝑡  𝑒

2𝜋𝑗  −
𝛼2
2

 𝜏2+𝛽2𝜏  𝑒2𝜋𝑗 𝛼2𝑡𝜏

  (6) 

The two auto-terms now depend on tτ instead of τ alone in the constant speed case.  

 

The two cross-terms are each a product of three terms: 

 The first one depends only on time and follows the variations of  𝛼0 𝑡 = 𝑓1 𝑡 − 𝑓2 𝑡 , 
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 The second one depends only on 𝜏, 

 The third one depends on the product  𝑡 𝜏, as in the auto-terms. 

 

It should be possible to detect the first term by applying a “Speed correlation”, though, due to the third 

term,  it should not exhibit such a sharp “order line” as the cyclic spectral line observed in the stationary 

case. 

 

2.3 Speed Transform based diagnosis tools 

Speed transform was first introduced in [1]. It consists in decomposing a signal over a basis of oscillatory 

functions 𝑏𝑛 𝑡  whose frequencies follow the speed variations. It consists in calculating 
1

𝑇
 𝑠 𝑡 𝑏0

∗ 𝑡 𝑑𝑡
𝑇

0
 for 

all the basis functions: 

 𝑏𝑜 𝑡 = 𝑒2𝜋𝑗 𝑜  𝑓𝑟 𝑢 𝑑𝑢
𝑡

0  (7) 

Where 𝑓𝑟 𝑡  denotes the rotation frequency and o the order. More details about the accuracy of the 

transform and its asymptotic properties can be found in [1]. This basis was proved to be asymptotically 

orthonormal in the case of linear speed variations. Speed transform exhibits speed lines at all orders 

corresponding to oscillatory components whose frequencies are proportional to 𝑓𝑟 𝑡 . It is an efficient tool 

for the estimation of the amplitude of components whose frequencies follow the speed variations. We 

propose to extend two signal processing tools classically used for roller bearing diagnosis in constant speed 

to the case of linear speed variations by replacing Fourier Transform (FT) by Speed Transform (ST).  

 

By replacing FT by ST in the envelope spectrum, we obtain an Envelope Speed Transform (EST), 

calculated through the following steps: 

 

 

 

 

 

Figure 1: Synoptic of the Envelope Speed Transform calculation, where o stands for the order relatively to 

the rotation frequency 

 

Spectral correlation function is a Fourier transform of the autocorrelation function both over time and 

time-lag. Fourier transform over time gives cyclic frequency while Fourier transform over time-lag gives 

spectral frequency. When applied to cyclostationary signals, spectral correlation exhibits spectral lines in 

cyclic frequency. We thus replace Fourier Transform by Speed Transform over time, while we still apply 

Fourier transform over time-lag. The function obtained, that will be called in what follows Speed 

Correlation, thus depends on spectral frequency and order instead of spectral frequency and cyclic frequency. 

In the presence of components whose frequencies follow the speed variations, it should exhibit “order lines” 

versus order. 

 

2.4 Application of the proposed tools to the simplified signal 

The simulated signal generated here can be described by Eq. 3 with the following parameters: 

 Sampling frequency: fe = 100 kHz 

 Number of samples: 20000, which corresponds to 0.2 seconds 

 Rotation frequency: fr(t) = 500 + 2500 * t 

 Frequency of the first component: f1(t) = 2 * fr(t)  

s(t) Hilbert transform |   |
2
 Speed Transform S(o) 
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 Frequency of the second component: f2(t) = 3 * fr(t) 

 The amplitudes a1=a2 are complex, random, Gaussian and totally correlated. 

  

The tachometer signal is a cosine wave at the rotation frequency. Speed envelope spectrum is applied to 

the whole length of the signal, with Hamming windowing, and interpolated by 2. The EST of the simplified 

signal is displayed on Fig. 2. As expected from the theoretical study, an order line appears at order K such 

that  f1 t − f2 t = K fr(t) , i.e. K=1. 

 
 Figure 2: Envelope Speed Transform of the simplified signal 

  

The Speed Correlation of the same signal was calculated for an order range going from 0.95 to 1.05 by 

steps of 0.001. It was estimated by averaged periodogram over 100 slices with 2/3 overlap. As can be 

observed on the result displayed on Fig. 3, an order line appears at order one, in spite of the weighing term 

that depends on 𝑡𝜏. 

 
Figure 3: Speed correlation of the simplified signal 
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3. Application of the Speed Transform to roller bearing signals 

3.1 Application to a simulated roller bearing vibration signal 

Once validated on the simplified signal the two proposed techniques were applied to a simulated roller 

bearing signal following Eq. 1. The parameters of the model are the following ones: 

 Mean diameter: 𝐷𝑚 = 39𝑚𝑚 

 Ball diameter: 𝑑 = 7.5𝑚𝑚 

 Number of rolling elements: 𝑍 = 13 

 Contact angle: 𝛼 = 0° 

 Resonance frequency: 𝑓𝑟𝑒𝑠 = 8 𝑘𝐻𝑧 

 Rotation frequency: 𝑓𝑟 = 50 + 3.33 𝑡  

 Amplitude modulation: 𝑚 𝑡 = 1 + 𝑐𝑜𝑠  2𝜋  𝑓𝑟 𝑢 𝑑𝑢
𝑡

0
  

 Outer ring damage of frequency: 𝑓𝑑 𝑡 = 5.25 𝑓𝑟 𝑡  

 7% random jitter on the damage period 

 Signal duration: 2 seconds 

 Sampling frequency: 100 kHz 

 Additive Gaussian random noise. The Signal to Noise Ratio is 𝑆𝑁𝑅 = 7𝑑𝐵 

 

The envelope Speed Transform of this simulated vibration signal is given in Fig. 4. It exhibits a classical 

envelope spectrum pattern, with a speed line at order 5.25 and sidebands due to the modulation at the 

rotation frequency. 

 

 
Figure 4: Envelope Speed Transform of the simulated roller bearing vibration signal 

 

The speed correlation was computed on the same simulated vibration signal for orders ranging from 4 to 

6.5 by step of 0.001. It was estimated by averaged periodogram over 100 slices with 2/3 overlap. It is 

normalized by the energy of the spectrum, so that the function displayed in Fig. 5 corresponds to Speed 

coherence (equivalent to spectral coherence if computed with Fourier transform). It exhibits a pattern that is 

characteristic of the chosen damage, with a peak of energy at order 5.25 and sidebands due to the rotation 

frequency. These peaks are wider than actual lines, which is probably due to the factor varying in 𝑡𝜏. 
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Figure 5: Speed coherence of the simulated roller bearing vibration signal 

 

3.2 Application to a real-life roller bearing vibration signal 

The signal was recorded with an accelerometer on a Spetraquest test bench. The roller bearing 

characteristics are the following ones: 

 

 Number of balls: Z = 8 

 Ball diameter: d = .3125 inches 

 Mean diameter: Dm = 1.319 inches 

 The sampling frequency is fs = 51.2 kHz 

 Damage on the outer ring 

 

From these characteristic, we can deduce that the damage frequency should be equal to fd = 3.05 * fr with 

fr the rotation frequency, so that the envelope Speed Transform should exhibit lines at order od = 3.05 and its 

harmonic orders.  

The rotation speed, estimated from a tachometer signal, is plotted on Fig. 6. 
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Figure 6: Variations of the rotation frequency 

 

Both envelope spectrum and envelope Speed Transform were computed over a part of the signal taken 

between 8s and 16.5s and beforehand high pass filtered at fs / 4. The two transforms are plotted on Fig. 7. On 

the chosen time interval, the mean rotation frequency is 32.5 Hz. The envelope spectrum is displayed from 

0 Hz to 1300 Hz in order to take into account the harmonics of that mean frequency up to the 40
th
. Almost 

nothing can be detected from the classical envelope spectrum, whereas the envelope Speed Transform 

exhibits order lines at order Od = 3.025, which is very close to the theoretical order od = 3.05 and its 

harmonic orders. 

Figure 7: Envelope spectrum and envelope Speed Transform of the real-life vibration signal.   

0 5 10 15 20 25 30
0

10

20

30

40

50

60
Variations of the rotation speed in Hz

Time (s)

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4
Envelope spectrum

Frequency (Hz)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5
Envelope Speed Transform

Order

Fd=3.025 



9 

4. Conclusion 

Here, some classical tools of roller bearing vibrations analysis have been extended to time varying 

operation condition by replacing Fourier transform by Speed transform. The relevance of such techniques 

have been shown by studying the effect of speed variations on a simplified model of these vibrations. We 

proposed two new analysis tools, called envelope speed transform and speed correlation. Envelope Speed 

Transform seems to be a very promising diagnosis tools both because it is very well fitted to the time varying 

model of the vibrations, and because it is applied over the whole length of the signal, which ensures the 

orthonormality of speed transform. Speed correlation also gave interesting results on the simulated signals, 

though it does not appear from the theoretical study as well fitted to the model as envelope Speed Transform, 

and the application to short slices of the signal can deteriorate the orthonormality. The theoretical aspects of 

Speed Transform and its extension to the case of non linear variations are still under study. 
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A Autocorrelation function of the simplified model in variable speed operation 

𝑠 𝑡 = 𝑎1𝑒
2𝜋𝑗  𝑓1 𝑢 𝑑𝑢

𝑡

0 + 𝑎2𝑒
2𝜋𝑗  𝑓2 𝑢 𝑑𝑢

𝑡

0  

Amplitudes a1 and a2 are complex, random and can be either correlated or not. 

 

A.1 General case 

𝑅𝑠 𝑡, 𝜏 = 𝐸 𝑠 𝑡 𝑠∗ 𝑡 − 𝜏   
 

𝑅𝑠 𝑡, 𝜏 = 𝐸   𝑎1𝑒
2𝜋𝑗  𝑓1 𝑢 𝑑𝑢

𝑡

0 + 𝑎2𝑒
2𝜋𝑗  𝑓2 𝑢 𝑑𝑢

𝑡

0   𝑎1𝑒
2𝜋𝑗  𝑓1 𝑢 𝑑𝑢

𝑡−𝜏

0 + 𝑎2𝑒
2𝜋𝑗  𝑓2 𝑢 𝑑𝑢

𝑡−𝜏

0  
∗

  

 

𝑅𝑠 𝑡, 𝜏 = 𝑅1 𝑡, 𝜏 + 𝑅2 𝑡, 𝜏 + 𝑅2,1 𝑡, 𝜏 + 𝑅1,2 𝑡, 𝜏  
 

𝑅1 𝑡, 𝜏 = 𝐸  𝑎1 
2 𝑒

2𝜋𝑗   𝑓1 𝑢 𝑑𝑢− 𝑓1 𝑢 𝑑𝑢
𝑡−𝜏

0

𝑡

0
 

= 𝐸  𝑎1 
2 𝑒2𝜋𝑗  𝑓1 𝑢 𝑑𝑢

𝑡

𝑡−𝜏  

𝑅2 𝑡, 𝜏 = 𝐸  𝑎2 
2 𝑒

2𝜋𝑗   𝑓2 𝑢 𝑑𝑢− 𝑓2 𝑢 𝑑𝑢
𝑡−𝜏

0

𝑡

0
 

= 𝐸  𝑎2 
2 𝑒2𝜋𝑗  𝑓2 𝑢 𝑑𝑢

𝑡

𝑡−𝜏  
 

𝑅2,1 𝑡, 𝜏 = 𝐸 𝑎2𝑎1
∗ 𝑒

2𝜋𝑗   𝑓2 𝑢 𝑑𝑢
𝑡

0
− 𝑓1 𝑢 𝑑𝑢

𝑡−𝜏

0
 
 

𝑅1,2 𝑡, 𝜏 = 𝐸 𝑎1𝑎2
∗ 𝑒

2𝜋𝑗   𝑓1 𝑢 𝑑𝑢
𝑡

0
− 𝑓2 𝑢 𝑑𝑢

𝑡−𝜏

0
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A.2 Peculiar case of constant frequencies 

𝑅1 𝑡, 𝜏 = 𝐸  𝑎1 
2 𝑒2𝜋𝑗 𝑓1𝜏  

𝑅2 𝑡, 𝜏 = 𝐸  𝑎2 
2 𝑒2𝜋𝑗 𝑓2𝜏  

 

𝑅2,1 𝑡, 𝜏 = 𝐸 𝑎2𝑎1
∗ 𝑒2𝜋𝑗   𝑓2−𝑓1 𝑡+𝑓1𝜏  

𝑅1,2 𝑡, 𝜏 = 𝐸 𝑎1𝑎2
∗ 𝑒2𝜋𝑗   𝑓1−𝑓2 𝑡+𝑓2𝜏  

 

The two components 𝑅1 𝑡, 𝜏  and 𝑅2 𝑡, 𝜏  depend only on 𝜏. The two cross terms depend both on t and 𝜏. 

These terms are periodic versus time with t at frequency 𝑓1 − 𝑓2, so that 𝑠 𝑡  is cyclostationary at that 

frequency. 

 

A.3 Peculiar case of uncorrelated amplitudes 

In this case the cross-terms 𝑅2,1 𝑡, 𝜏  and 𝑅1,2 𝑡, 𝜏  are equal to zero. The autocorrelation function thus does 

not depend on time and 𝑠 𝑡  is stationary. 

 

A.4 Case of the time varying frequencies 

Let us suppose that the frequencies 𝑓1 𝑡  and 𝑓2 𝑡  are linearly varying. 

 

𝑓1 = 𝛼1𝑡 + 𝛽1 

𝑓2 = 𝛼2𝑡 + 𝛽2 

 

𝑅1 𝑡, 𝜏 = 𝐸  𝑎1 
2 𝑒

2𝜋𝑗  𝛼1𝑡𝜏+𝛽1𝜏−
𝛼1
2
𝜏2 

 

𝑅2 𝑡, 𝜏 = 𝐸  𝑎2 
2 𝑒

2𝜋𝑗  𝛼2𝑡𝜏+𝛽2𝜏−
𝛼2
2
𝜏2 

 
 

𝑅2,1 𝑡, 𝜏 = 𝐸 𝑎2𝑎1
∗  𝑒

2𝜋𝑗  
 𝛼2−𝛼1 

2
𝑡2+ 𝛽2−𝛽1 𝑡  𝑒

2𝜋𝑗  −
𝛼1
2
𝜏2+𝛽1𝜏  𝑒2𝜋𝑗 𝛼1𝑡𝜏  

𝑅1,2 𝑡, 𝜏 = 𝐸 𝑎1𝑎2
∗  𝑒

2𝜋𝑗  
 𝛼1−𝛼2 

2
𝑡2+ 𝛽1−𝛽2 𝑡  𝑒

2𝜋𝑗  −
𝛼2
2
𝜏2+𝛽2𝜏  𝑒2𝜋𝑗 𝛼2𝑡𝜏  

 

 

 

A.5 Peculiar case 𝛕 = 𝟎 

𝑅1 𝑡, 0 = 𝐸  𝑎1 
2  

𝑅2 𝑡, 0 = 𝐸  𝑎2 
2  

 

𝑅2,1 𝑡, 𝜏 = 𝐸 𝑎2𝑎1
∗  𝑒

2𝜋𝑗  
 𝛼2−𝛼1 

2
𝑡2+ 𝛽2−𝛽1 𝑡 

 

𝑅1,2 𝑡, 𝜏 = 𝐸 𝑎1𝑎2
∗  𝑒

2𝜋𝑗  
 𝛼1−𝛼2 

2
𝑡2+ 𝛽1−𝛽2 𝑡 

 

 

The autocorrelation function then becomes: 

𝑅𝑠 𝑡, 0 = 𝐸  𝑠 𝑡  2 = 𝐸  𝑎1 
2 + 𝐸  𝑎2 

2 + 2 𝑅𝑒 𝑎1𝑎2
∗ 𝑐𝑜𝑠  2𝜋  

 𝛼2 − 𝛼1 

2
𝑡2 +  𝛽2 − 𝛽1 𝑡   

It thus depends on t and follows the variations of 𝑓1 𝑡 − 𝑓2 𝑡 .  
 

 


