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Abstract 
The purpose of this paper is to take advantage of the cyclostationary indicators, in order to detect and classify the 
defects that can occur on mechanical parts of a system, such as the gearboxes and the bearings. 

The set of data used includes a variety of signals that describe the healthy state of a bearing, as well as other 
faulty states. After resampling the signals in the angular domain, a synchronous averaging is then performed in 
order to calculate the second, third and fourth order cumulants. The calculated cumulants, in addition to the first 
order moment, are the tools needed to calculate the cyclostationary indicators. Those indicators will be used as 
input parameters for an artificial neural network, in order to lead to an efficient fault detection and classification, 
with a high accuracy, and using the minimum number of parameters. 

This paper offers for the first time, the analysis of bearing signals using higher-order cyclostationary indicators 
up to the fourth order. Moreover, it permits to test how powerful would be the cyclostationarity indicators when 
used with an artificial neural network, as this kind of parameters is not typically used in the previous mechanical 
fault classification procedures. 

1 Introduction 
During the latest years, cyclostationarity has shown a big interest in the study of rotating elements, since 

those elements can carry some hidden periodicities during their rotation. Since 1991, many descriptors have 
been proposed to calculate the degree of cyclostationarity, starting with ZIVANOVIC and GARDNER [1]. In 
2005, RAAD and al [2] have proposed some new cyclostationarity indicators that can be extended till the fourth 
order. Those indicators have been tested on healthy and faulty gear signals, and have shown a significant 
efficiency when it comes to the fault detection using a predefined threshold. Bearing signals have never been 
tested with this kind of indicators, as well as the effectiveness of these indicators when used with an artificial 
neural network.  

The following sections show the results obtained when implementing those indicators (proposed by [2]) 
on healthy bearing signals, as well as on faulty signals that come from inner race faults, outer race faults or 
rolling element faults. Once the indicators have been generated, the signals are classified using an artificial 
neural network, with exact radial basis activation functions.  

 

 



 

 

2 Cyclostationary analysis  

2.1 Generalities about cyclostationarity  

Vibration signals, especially those extracted from rotating machines, are non-stationary signals that 
present in their background some hidden periodicities. To extract those periodicities, it is possible to use many 

tools of signal processing. One of the powerful tools is the cyclostationary analysis. 

In a first approach, a non-stationary signal is said to be wide sense cyclostationary if its autocorrelation 
function R(t,𝜏) presents many periodicities with respect to time t, in opposite with the stationary signal whose 
autocorrelation function is periodic with respect to the time lag 𝜏[3]. 

R(t+T,𝜏) = R(t,𝜏)        (1) 

Where R(t,𝜏) = E{x(t) x(t-𝜏)} 

Similarly, a non-stationary signal is said to be nth order cyclostationary with a cyclic period T, if its nth 
order moment is periodic of period 𝑇� . [4] 

𝑚(𝑛)(�̃�) = 𝑚(𝑛)��̃� + 𝑇��     (2) 

 Where 𝑇� = [𝑇,𝑇, … ,𝑇(𝑛)]𝑡and  �̃� =  �𝑡, 𝑡, … , 𝑡(𝑛)�
𝑡
 

 A pure cyclostationary signal is an nth order cyclostationary signal, whose all cyclostationary 
contribution of the lower orders is extracted. This operation requires checking the periodicities of the cumulants 
related to the vibration signal [5]. The cumulants are calculated after extracting the synchronous average. 

 2.2 Cyclostationary indicators 

 The use of cyclostationary indicators has shown a big interest many years ago. Since 1975, many 
contributions were developed to measure the degree of cyclostationarity. The indicators that were developed by 
RAAD and al were tested on gear signals, their evolution was determined with respect to the severity of the gear 
fault. Those indicators have shown some significant results (detail some results from the paper). They had many 
advantages: 

o They are monotonic increasing functions of the degree of cyclostationarity. 
o They are theoretically null for a stationary signal. 
o They are normalized by the signal’s energy and have no dimension. 
o They generalize some standard cumulants like the RMS value, the skewness, and the kurtosis, giving 

them a cyclic signification. 

A signal x(t) is defined by its first order moment m1x(t), and its cumulants of higher orders c2x(t,𝜏), 
c3x(t,𝜏1, 𝜏2), and c4x(t,𝜏1, 𝜏2, 𝜏3). The cyclic moment 𝑀1𝑥

𝛼  and cumulants 𝐶𝑛𝑥𝛼 , are defined to be the Fourier 
coefficients of the temporal moment and cumulants[2]. 



𝐶2𝑥𝛼 (0) =  ∫𝑆2𝑥𝛼 (𝑓)𝑑𝑓     (3) 

𝐶3𝑥𝛼 (0) =  ∫𝑆2𝑥𝛼 (𝑓1,𝑓2)𝑑𝑓1𝑑𝑓2    (4) 

𝐶4𝑥𝛼 (0) =  ∫𝑆2𝑥𝛼 (𝑓1,𝑓2,𝑓3)𝑑𝑓1𝑑𝑓2𝑑𝑓3   (5) 

𝑆2𝑥𝛼  being the spectral correlation function at the cyclic frequencies. 

The indicators that were proposed up to the fourth order were given as follows [2]: 

𝐼1𝑥 = ∑ |𝑚1𝑥
𝛼 |2𝛼≠0      (6) 

𝐼2𝑥 = ∑ |𝐶2𝑥𝛼 (0)|2𝛼≠0      (7) 

𝐼3𝑥 = ∑ |𝐶3𝑥𝛼 (0,0)|2𝛼≠0      (8) 

𝐼4𝑥 = ∑ |𝐶4𝑥𝛼 (0,0,0)|2𝛼≠0     (9) 

After normalization of these indicators by the signal energy, we lead to the following relations[2]: 

𝐼1𝑥𝑛 = 𝐼1𝑥
|𝐶2𝑥
0 (0)|

      (10) 

𝐼2𝑥𝑛 = 𝐼2𝑥
�𝐶2𝑥

0 (0)�
2      (11) 

𝐼3𝑥𝑛 = 𝐼3𝑥
�𝐶2𝑥

0 (0)�
3      (12) 

𝐼4𝑥𝑛 = 𝐼4𝑥
|𝐶2𝑥

0 (0)|4
      (13) 

In general, cyclostationary indicators are calculated on angular sampling signals. If this sampling is not 
possible, angular resampling helps getting a fixed number of samples over one machine turn; therefore, 
the vibration signal becomes related directly to the position of the machine shaft, and the same for the 
periodicities. The extraction of cumulants becomes more accurate in this case. 

 

3 Signals 

3.1 Database  

 The tested signals were acquired at the University of New South Wales (UNSW) in Australia. The 
database contains gear and bearing signals. The gear signals are divided into healthy and faulty ones. The 
bearing signals refer to healthy bearings, bearings with inner race faults, outer race faults, and rolling element 
faults, with a zero degree contact angle, each fault being alone. The bearing faults are of the form of a localized 
and reduced size spalling. Other signals also contain hybrid faults gear/bearing.  

All the signals are acquired upon two rotation speeds 6 Hz and 10 Hz (360 and 600 rpm). Four torque 
ratings are also available for each signal: 25 Nm, 50 Nm, 75 Nm and 100 Nm. All the signals are sampled with a 
48 KHz sampling rate over 100 000 samples.  



The accelerometer is placed right on the top of the faulty bearing which is located on the driven shaft. 
Two encoders of resolution 900 points per turn are placed on the driving and on the driven shafts. In addition to 
that, a once per revolution signal is obtained from the encoder on the driving shaft.  

The bearings used along the tests are of the type Koyo 1250, they are self-aligning bearings with 12 balls 
on each column. 

 

Figure 2: A set of signals presenting the different fault types at the rotation speed of 360 rpm 

3.2 Data management   

The set of data that was used contains the signals that describe the healthy state as well as the faulty state 
of a bearing for the two available speed rating and the four available torques. A total of 32 signals were used for 
this task. 

As a first step, the signals were cropped on both sides to fit a certain well know number of cycles using 
the one per revolution signal of the encoder. Typically 12 complete cycles for the rotation speed of 360 rpm (~ 
8000 samples per complete cycle), and 20 complete cycles for 600rpm (~ 4800 samples per complete cycle). 
Then the signals were resampled on an angular basis using the encoder signal that has a resolution of 900 points 
per turn. 20 points per encoder revolution were used so that the complete cycle will contain 18000 samples. The 
synchronous average was extracted from the signal in order to generate the cumulants. 



 

Figure 2: Cropping the signal edges using the once per revolution signal 

3.3 Obtained results 

After the signals are ready to be used, cyclostationary indicators have been calculated for each fault 
type. Figures 2 and 3 show the results. For the first and second order indicators, the contribution with the faulty 
state was very limited or absent. As for the higher order indicators, the contribution of the indicators with the 
faults was highly visible, and the faulty state can be directly identified using a simple threshold. The ball fault 
was the most to contribute with the higher order indicators; the inner race follows it, and finally comes the outer 
race fault. Moreover, every time the torque was increased, we could visibly see a diminution in the value of the 
indicators. 

 

Figure 2: Cyclostationary indicators at the rotation speed of 600 rpm. 



 

Figure 3: Cyclostationary indicators at the rotation speed of 360 rpm. 

4 Artificial neural network 

4.1 Learning  

The automatic detection and classification of bearing defects was implemented on an artificial neural 
network of the type RBF exact, and using MATLAB®. The set of data that was used to teach and test the neural 
network comes from the signals that describe the bearing state with respect to the rotation speed and torque.  The 
program was set to teach the neural network with a signal that has a length equal to ¾ to length of the original 
signal, and that’s by taking randomly distinct cycles. This means for the 360 rpm rotation speed, as for the 
original signal we have 12 complete cycles, each time the program takes 9 cycles randomly from the original 
signal, calculates the cyclostationarity indicators, and teaches the neural network with a new set of data. 220 
combinations of 9 cycles are possible. The same procedure is made for the 600 rpm rotation speed, where the 
program choses randomly 15 cycles of 20 to teach the neural network. 15504 combinations of 15 cycles are 
possible. All we used is 20 combinations to teach the neural network, and 20 others to test it, and that’s for each 
signal. Those actions were repeated up to 10 times in order to assure the stability of the results, and average the 
global performance. 

4.2 Fault detection and classification 

 The fault detection performance of the neural network was tested for two different cases, the case where 
the input parameters are the four cyclostationary indicators. And the other case is when only the higher order 
cyclostationarity indicators (third and fourth order) are used as input parameters. The performance results came 
as follows: 



 

 

 

Table 1:  Neural network’s performance in bearing fault detection. 

 

 The same input parameters have been used to test the neural network’s performance classifying the 
different bearing faults. The performance results came as follows: 

 

 

 

Table 2:  Neural network’s performance in bearing fault classification. 

Those indicators have shown an important performance when used with the artificial neural network; 
they are not only performing, but also fast to be computed. This can help realize many operations successively 
on the signal to insure whether the results are accurate or not. With a performance of 90%, and with a faulty 
signal, 5 repetitions are needed to get at least one correct result at 99.999%, and at least three correct results at 
99.799%. It is a matter of seconds. 

 

4 General conclusion 
The mechanical faults caused by the bearing failure have shown a big influence on the evolution of the 

cyclostationary indicators that have been used in this paper. The advantage of the response received by those 
indicators resides mainly in their simple way to calculate, the task that can be accomplished in milliseconds on 
any computer that is not dedicated for heavy operations. Those indicators have been also proved to be powerful 
standalone input parameters for an artificial neural network. This performance might be improved if the artificial 
neural network is substituted by other means of the artificial intelligence. Other scenarios could also be 
discussed in further applications such that the presences of dual faults gear/bearing, or any other fault occurring 
simultaneously with the bearing one. 
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