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1Laboratorio de Vibraciones Mecánicas, Universidad de Concepción
Edmundo Larenas 270 int., Concepción, Chile

2VIAMIS - Industrial Services & Research; Condition Based Maintenance
Gasborn 33, 52062 Aachen, Germany

{crimolin@udec.cl, christoph.hoeweler@viamis.de}

Abstract
The use of AE in machine failure diagnosis has increased over the last years. Most AE-based failure diagnosis
strategies use digital signal processing and thus require the sampling of AE signals. High sampling rates are
required for this purpose (e.g. 2 MHz), which leads to streams of large amounts of data. This situation is ag-
gravated if fine resolution and/or multiple sensors are required. These facts combine to produce bulky amounts
of data –typically in the range of GBytes,– for which sufficient storage space and efficient signal processing
algorithms are required. This situation probably explains why, in practice, AE-based methods consist mostly
in the calculation of scalar quantities such as RMS, Kurtosis, etc., and the analysis of their evolution in time.
While the scalar-based approach offers the advantage of maximum data reduction; it has the disadvantage that
most part of the information contained in the raw AE signal is lost unrecoverably. This work presents a method
offering extreme data reduction, while keeping the most important information conveyed by the raw AE signal,
which is useful for failure diagnosis purposes. The proposed method is very simple: it consist on the construc-
tion of a synthetic, unevenly sampled signal which envelopes the AE bursts present on the raw AE signal in a
triangular shape. The constructed signal –which we call TriSignal– also permits the estimation of most scalar
quantities typically used. But more importantly, it contains the information of the time of occurrence of the
bursts, which is key for failure diagnosis. Furthemore, we show how the TriSignal can be used to compute the
TriSpectrum, an estimator of the frequency content of the AE envelope.

1 Introduction

During the last decades we have experienced an increase in the use of AE for condition monitoring of
machines [1]. The most important advances have been made in the problem of bearing failure detection. In this
case, the detection is based on the major differences between the AE generated by healthy and faulty bearings.
In the first case, the AE signal has a noise-like shape; whereas when a fault develops, the resulting AE contains
a number of bursts. Although this is the particular case for bearings, there are other elements in which a failure
does also result in AE bursts; these include gears [2][3][4][5] and cracks [6]. This situation justifies why the
interest has been focused on the detection of the presence of the bursts in the AE signal.

In cases where the fault is the only source of burst-type AE, the calculation and trending of scalar values
(e.g. Kurtosis, RMS) is commonly sufficient for this task. This is the case of bearings, and probably explains
why the majority of research in this subject has relied on this scalar-based approach [7][8][9][10]. Some
investigators have reported interesting advances including the correlation of the scalar quantities with the failure
size [11][12]. Most of these researches use test benches comprising only bearings (one of them being the test
object). Thus, the only source of burst-type AE is indeed the baring fault. This is illustrated in Fig.1, where
the AE measured on the bearing case of a bearing test bench such as the described are presented for the non-
faulty and faulty case. The AE resulting from the bearing in good condition is a random signal presenting no
recognizable bursts. Differently, a succession of bursts are evidenced when the faulty bearing (in this case outer
race defect) is installed. The bursts are generated by the interaction of the rotating elements with the faulty
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Figure 1: AE measured on the bearing case of a bearing test bench. (a) Non-faulty bearing. (b) Faulty bearing
(outer race fault). Nomenclature of scalar values: Vp: peak; Vpp: peak-to-peak; RMS: Root Mean Square; CF :
crest factor; K: Kurtosis.

zone. The plots in Fig.1 also include the magnitude of scalar values typically used. Note how all these values
increase, thus evidencing the presence of the fault. As expected in a case like this, the Kurtosis is the most
sensitive parameter. The advantage of the scalar based approach is that the scalar quantities can be calculated
by hardware and, thus, can be recorded using low-cost data acquisition systems.

Based on the previous example one would not need a different method, since the scalar-based approach is
sufficient for the detection of the fault. However, real machines do also include other mechanical components,
being gear transmissions probably the most often found. Even though several questions regarding the behaviour
of AE in gears still are subject of research, there is enough evidence of the burst-type AE generated as the (non-
faulty) gear teeth mesh [5]. In a situation like this, the scalar quantities calculated from the AE measured
on, for example, a gear transmission, would be largely influenced by the bursts coming from the gear tooth
interactions. Hence, under the presence of a bearing fault, the scalar-based approach would only be sucessful if
the bursts originated by the fault are large enough to produce recognizable changes in the scalar values. From
our experience, this is rarely the case.

Consider the AE signal shown in Fig.2a, which was measured on the case of a planetary gearbox without
failures. The figure also presents the values of the scalar quantities typically used. Figure 2b shows the situation
for the AE measured on the same gearbox, but with a faulty planet gear (localized seeded defect). The only
scalar quantities incrementing their values with respect to the non-faulty situation were the RMS (13.7%) and
the Kurtosis (1.6%), but is arguable if this increase is sufficient to be indicative of the presence of the fault, since
AE from gears are also sensitive to changes in load and speed [5]. Keep in mind, however, that the information
related to the failure is present in the raw AE; it is only that the scalar values are not much sensitive to it. The
problem is that this information can not be recovered from the scalar quantities; that is, the evidence of the
presence of the failure is lost unrecoverably.

The previous examples illustrate the need for a different approach, capable of overcoming this situation.
Recognizing that the succession of bursts present on the AE signal make it essentially a cyclostationary signal,
a straightforward solution would be to scrutinize the frequeny structure of the cyclic amplitude changes. Proba-
bly the best alternative to do this is by using the Spectral Correlation Density (SCD) or the Spectral Coherence
(SCoh) [13], since both present the content of the amplitude changes in the frequency and cyclic frequency do-
main simultaneously. However, the computing costs of doing this (in terms of time consumption and processing
requirements) might be too high for some applications.

The envelope spectrum is another cyclostationary tool which demands less computing costs, but is not as
powerful as the SCD and SCoh [14]. In most cases, the envelope spectrum would probably be the best solution.
However, the envelope spectrum it is still a vector containing a number of elements that can be large depending
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Figure 2: Acoustic emissions measured on a planetary gearbox (a) non-faulty. (b) Localized planet defect.
Nomenclature of scalar values: Vp: peak; Vpp: peak-to-peak; RMS: Root Mean Square; CF : crest factor; K:
Kurtosis.

on the resolution and maximum frequency. In some applications, the envelope might still be expensive in terms
of storage requirements.

This work presents an alternative method offering extreme data-reduction possibilities, while keeping the
most important information conveyed by the raw AE-signal, which is useful for machine failure diagnosis.
Another advantage of the method is its simplicity. We present the method in the following sections.

2 The TriSignal method

One of the most important applications of AE in condition monitoring is in low-speed machinery. This
is because at low speeds, the energy released due to the interaction of the elements under the presence of a
fault is sometimes not sufficient to produce actual movements, but sufficient to produces acoustic waves. Thus,
measurements from vibration sensors usualy do not contain information related with the failure; whereas data
from AE sensors have more chances of carrying this valuable information.

When dealing with low-speed machines, signals containing several shaft revolutions are normally needed
to obtain the desired frequency resolution. For example, a resolution of 0.1 Order would be a typical choice for
the analysis. If the shaft rotates at 1 Hz, then a 10 s long signal is must be recorded. If the sampling rate is 2
MHz and the double-precission format is used, then 160 MBytes of data are generated. The data amount grows
when multiple channels and repetitive measurements are needed, as would be the case for typical continuos
monitoring systems. Large storage capabilities would then be required to store the measurements. Moreover,
the processing of such amount of data demands high computing requirements and efficient signal processing
algorithms. In practice, all this results in expensive systems and is probably the reason why the scalar-based
approach has prevailed, at the expenses of great information loss.

The proposed method was developed with the objective of keeping the most possible information relevant
for failure diagnosis, which is contained in the raw AE signal, while offering large data reduction, thus providing
a solution to the afore mentioned situation. The method consist in the construction of a synthetic, unevenly
sampled signal, which envelopes the AE bursts present in the raw AE signal in a triangular shape, so that each
burst in the signal is enveloped by a triangle, as shown in Fig.3a. Note from this figure that three coordinate
pairs are needed for this purpose; however it is only required to obtain four scalar values from the AE signal.
Three scalar values contain the time information descriptive of the burst: t i

s is the start time of the burst; t i
m

is the time of maximum amplitude; and t i
e is the time of burst end. The fourth scalar value (yi

n) contains the
maximum amplitude of the burst (i = 1,2, ... is the burst index). The amplitude of the first and third coordinate
pair are only required to close the triangle, hence they arbitrarily take the value of zero (i.e. yi

s = yi
e = 0). The

TriSignal is then formed by the succession of all triangles enveloping the bursts in the AE signal, as presented
in Fig.3b. From this definition, the TriSignal can be interpreted as an unevenly, undersampled envelope of the
raw AE signal. Although the idea of the TriSignal might appear simplistic, we show in the next sections that it
can be used to construct powerful tools for failure diagnostics.
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Figure 3: Construction of the TriSignal. (a) Enveloping a single burst in triangular shape. (b) The TriSignal
(red) is formed by the succession of triangles enveloping the bursts in the raw AE signal.

2.1 Data reduction features

Let us consider we would like to determine the condition of a bearing rotating at 1 Hz. In order to do this
a frequency resolution of 0.1 Hz has been chosen, for which an AE signal of length 10 s has been measured.
The sampling rate is 1 MHz and the data is stored in double-precision format. Let us also supose the bearing
has an outer race defect and the BPFO is approximately 7 Hz. Table 1 resumes the storage requirements of the
raw AE and the results of different processing techniques. In the case of the envelope, a downsampling factor
of 200 has been considered.

Item Data amount Data reduction
Raw AE (10 s) 80 MByte –

AE-Envelope (10 s) 0.4 MByte 99.500% w.r.t. raw AE

TriSignal (10 s) 2.24 kByte 99.440% w.r.t. AE-Envelope
99.997% w.r.t. raw AE

Scalar values (5 values) 40 Byte 98.214% w.r.t. TriSignal
99.990% w.r.t. AE-Envelope
99.999% w.r.t. raw AE

Table 1: Storage requirements and data reduction.

Note in this case the AE-envelope performs greatly in terms of data reduction with respect to the raw AE
(reduction of 99.500%). The TriSignal performs even better giving a further reduction of 99.440% (with respect
to the AE-Envelope). As expected, the maximum reduction is obtained with the scalar-based approach. Table
2 shows the amount of data generated over a period of 1 month and 1 year, considering the case in which an
AE-based continuous monitoring system is used. The system performs 2 measurements each day, each of 10 s,
and has 4 channels. The large amounts of accumulated data could also add difficulties in the data handling and
backup.

Item After 1 month After 1 year
Raw AE (10 s) 9.6 GByte 116.8 GByte
AE-Envelope (10 s) 48 MByte 584 MByte
TriSignal (10 s) 268.8 kByte 3.3 MByte
Scalar values (5 values) 4.8 kByte 58.4 kByte

Table 2: Accumulated data after a period of time.
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Figure 4: Construction of the TriSignal from the AE envelope. Color legend: raw AE (blue); AE envelope
(green); TriSignal (solid red); static threshold (dashed red).

2.2 TriSignal in the time domain

The most challenging part in building the TriSignal is determining when each AE Burst starts and when it
ends. This is also a crucial point within the method, because the results that can be obtained from the TriSignal
are highly dependent on the correct description of the bursts. The easiest way to perform this is by defining a
static threshold and an hysteresis parameter to avoid the division of a single burst into several bursts of shorter
duration. With this method, the beginning and end of each burst are determined by the times of threshold
crossing meeting the hysteresis criteria. This method can be applied to the raw AE, as it was presented in Fig.3
or to a filtered version of the raw AE signal, where the filter is used to enhance the burst with respect to the
background noise and improve the burst detection process. Spectral Kurtosis [15][16] or Cyclostationarity-
based quantities (e.g. SCD, SCoh) can be computed from a short portion of the AE-signal containing some
bursts for identification of the optimum filtering range. Depending on the characteristics of the background
noise, a moving threshold could be a better alternative. This can be a moving RMS or a similar quantity.

Alternatively, the method can be applied to the envelope of the AE, as presented in Fig.4. The envelope
being a measure of the energy flow in time, it usually results more practical to detect the bursts on the envelope
of the AE. In this case, it must be considered that the values obtained for each triangle (i.e. t i

s, t i
m and yi

m)
correspond to values of the energy flow rather than values of the actual AE signal.

The choice of the most appropriate method for burst detection, as well as the selection of the hysteresis
parameters will depend on the individual characteristics of the AE signal being measured; more precisely, on
the specific features of the bursts with respect to the continuous part of the signal. We have found the detection
based on the crossing of the AE envelope across a fixed threshold to have acceptable results in the experiments
we have conducted till date, which include AE from faulty bearings, from the meshing of spur gears and from
hydraulic motors.

The benefits of the TriSignal are not only the data reduction, but the quantities that can be obtained from it.
For example, it is possible to calculate estimators of time-domain scalar values typically determined from the
raw AE, such as the peak value, rise time (equal to t i

m− t i
s), fall time (equal to t i

e− t i
m), event duration (equal

to t i
e− t i

m), number of bursts, event density, etc. Other scalar values such as the RMS and Kurtosis cannot be
estimated from the TriSignal because the information of the background noise is not contained. If these (and/or
other) values are required, it would be necessary to calculate them from the raw AE an store them together with
the TriSignal. Note the information of each of these values is available for each burst, so it is even possible to
scrutinize their statistics through, for example, their probability density functions.

As a completely synthetic signal, it is possible to use the results from the scalar values of each burst for fil-
tering or source separation purposes. Consider, for example, an AE signal containing two families of repetitive
bursts from two different sources. Both sources generate bursts having the same frequency range, but one of
them produce bursts with larger duration. In a case like this, the event duration scalar value for each triangle
can be used to discriminate between a burst coming from one or the other source. This process leads to the
construction of two TriSignals, one for each source, which can be analyzed separately. Figure 5 shows a similar
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Figure 5: TriSignal used for separation of AE bursts from different sources (TriSignal determined from the AE
envelope).

example in which the peak value was used to discriminate between two sources; the TriSignal shown contain
only the triangles with peak value higher than 0.25 V.

2.3 TriSignal in the frequency domain

Once the TriSignal has been constructed, a natural step forward consist in the inspection of its periodicities.
In the case of the traditional envelope, this is usually done by scrutinizing the envelope magnitude spectrum,
which is obtained by calculation of the Fourier transform of the envelope signal. Considering its characteristics,
it is logical to proceed similarly with the TriSignal. However, this is not as straightforward, since from its
definition, the TriSignal is an unevenly sampled signal. As such, it does not meet the requirements for the
calculation of the magnitude spectrum by direct computing its Fourier transform. This issue can be solved by
using some methods. The most simple would be interpolating the TriSignal so as to have an evenly-sampled
version of it, and then calculate its Fourier transform. However, as reported by [17], this method performs
poorly especially if the signal presents long spacing between succesive points, as is the case for the TriSignal.
The Lomb-Scargle normalized periodiogram (Lomb spectrum in what follows) is another possible method
which is not subjected to this problem. It is based on the evaluation of sines and cosines of different frequencies
together with the unevenly sampled signal only at the times corresponding to the points of the latter [17]. That
is, in the case of the TriSignal, at the times t i

s, t i
m and t i

e for all hits of the signal portion under analysis. We
call the spectrum obtained from the calculation of the Lomb Spectrum of the TriSignal, the TriSpectrum, which
results in an estimator of the shape and therefore the frequency distribution of the AE envelope.

After calculation of the mean µ and variance σ2 of all data points of the TriSignal, the TriSpectrum Gyy ( f )
is calculated by

Gyy( f ) =
1

2σ2


[
∑i ∑ j

(
t i

j−µ

)
cos2π f

(
t i

j− τ

)]2

∑i ∑ j cos2 2π f
(

t i
j− τ

)


+
1

2σ2


[
∑i ∑ j

(
t i

j−µ

)
sin2π f

(
t i

j− τ

)]2

∑i ∑ j sin2 2π f
(

t i
j− τ

)


(1)

where i is the burst index, and j = s, m, ande. The frequency-dependent time constant τ is defined by

tan4π f τ =
∑i ∑ j sin2π f t i

j

∑i ∑ j cos4π f t i
j

(2)

where f is the frequency in Hz.
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Figure 6: Portion of TriSignal, non-faulty planetary gearbox. Color legend: raw AE (blue); AE envelope
(green); TriSignal (red).

The Lomb spectrum is then obtained with a low-frequency limit of flow = 1/T , where T is defined as the

total time-span between all data points of the TriSignal considered for the calculation (i.e. T = max
{

t i
j

}
−

min
{

t i
j

}
). Since it is highly probable that some data points of the TriSignal will be spaced much closer than

the average spacing considering all data points, it is even possible to obtain statistically significant results in
the Lomb spectrum for frequencies above the Nyquist frequency that would be obtained should all data points
be equally-spaced in the considered time-span T . The Lomb spectrum algorithm presented is a slow algorithm;
however, an approximation of it can be calculated much faster by making use of the FFT algorithm [17].

Following, we present an example of the use of the TriSpectrum calculated from the AE signal measured
on a single-stage spur-gear planetary gearbox. The gearbox has three equally spaced planet gears, each with
26 teeth. The sun gear has 18 teeth and the annulus gear has 72 teeth. The gearbox is used in reduction mode
with a rotational speed of the sun gear of fS = 30 Hz and a constant load of 65 Nm is applied to the output of
the transmission. This gearbox pertains to group A according to the classification proposed in [4]: Planetary
gearboxes with equally-spaced planet gears and in-phase gear meshing processes, so that the meshing of all
wheels inside the gearbox produce the burst part of the AE activity at the same time. For fS = 30 Hz, the gear
mesh frequency is 432 Hz and the rotational speed of the carrier plate is 6 Hz.

Acoustic emissions were measured with a sensor installed on the outer part of the annulus gear. The
TriSignal was constructed based on the envelope of the measured AE, as shown in Fig.6. The TriSpectrum
was calculated from the TriSignal using the previously defined methodology; the portion around the first gear
mesh harmonic is presented in Fig.7a. The modulations observed as sidebands around the gear mesh frequency
(marked with×) are due to the varying transfer path between the source position of the AE (which continuously
changes during operation of the gearbox) and the (fixed) position of the sensor. The components recognized
in the TriSpectrum are thus normal for a gearbox of these characteristics and, therefore, the diagnosis is good
condition of the unit. For comparison purposes the envelope spectrum of the AE is shown in Fig.7b. Note the
similarity with the shape of the TriSpectrum. The numeric cursors in figures 7a and 7b are referenced in the
next paragraph.

A localized defect was seeded in one tooth of one planet gear. The defect was accomplished using an
electrical engraving machine, Fig.8, and is considered a surface defect over the complete flank of one tooth.
The measurement was taken in the same manner described previously and the same procedure was followed to
obtain the TriSignal and the TriSpectrum. These are shown in Fig.9 and Fig.10a, respectively. The TriSpectrum
now reveals components not present before, marked with the numeric cursors. The space between each of these
components and the gear mesh frequency equals the relative rotational frequency of the planet gear with respect
to the carrier plate, which in this case is fP|C = 16.6 Hz. Their presence is indicative of the defect (note they
were not present in the non-faulty situation, see cursors in Fig.7a and Fig.7b). The envelope spectrum is shown
in Fig.10b, from which again the same information offered by the TriSpectrum is obtained.

In both faulty and non-faulty case, a signal length of 18 seconds was used. The raw AE was sampled at
a rate of 2.5 MHz. In a double-precision format each of these signals uses 360 MByte. The envelope has
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Figure 7: Portion around the first gear mesh harmonic of the (a) TriSpectrum and (b) envelope spectrum. Non-
faulty planetary gearbox.

Figure 8: Localized defect in one planet gear wheel.
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Figure 9: Portion of TriSignal, faulty planetary gearbox. Color legend: raw AE (blue); AE envelope (green);
TriSignal (red).

been downsampled to 10 kHz, for which a storage space of 1.44 MByte is needed. In the non-faulty case, the
TriSignal has 11262 triangles occupying a storage space of 0.36 MByte. In the faulty case, the TriSignal has
10591 triangles and uses 0.34 MBytes. This represents an average data reduction of 99.9% with respect to the
raw AE, and of 75.7% with respect to the envelope.
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Figure 10: Portion around the first gear mesh harmonic of the (a) TriSpectrum and (b) envelope spectrum.
Faulty planetary gearbox.

3 Some final remarks

The TriSpectrum appears as an interesting alternative to the envelope spectrum. However, the latter is –of
course– preferred; if there are enough ressources to base the monitoring in the envelope, then this should be
preferred. The only idea behind the TriSignal and the TriSpectrum is to provide an alternative to the envelope
when is desired to keep the minimum stored data.

We finally emphasize again the critical importance of detecting the bursts correctly on the construction of
the TriSignal. Considering that different mechanical systems have specific features, a previous analysis of the
AE of each particular case will be, in general, necessary. In cases where the bursts are clearly observable in
the signal, this represents no problem. In other cases, it might be needed to perform certain analysis to define
a filter which better isolate the bursts from the rest of the signal. If the mechanical system produce bursts
in the non-faulty condition (e.g. in gears), then a filter defined to isolate the normal bursts would be a good
choice. The hypothesis here is that the bursts generated by a fault-related source will probably share the same
frequency range or at least part of it, which is often the case. On the other hand, if the system does not produce
bursts in the non-faulty condition (e.g. in bearings), a resonant zone of the sensor can be chosen. Alternatively,
measurements can be done while generating artificial AE sources on the case of the machine and then selecting
a filter by analyzing its frequency content. The artificial AE source can be generated in practice by impacting
the case with a screwdriver or by breaking a graphite pencil lead on the case of the machine.

Alternatives to select the most appropriate filter include Spectral Kurtosis and cyclostationary-based tools,
altough less sofisticated techniques can be used in some cases. For example, the dB spectrum difference can be
used using two portions of the same signal, one including one or more bursts and the other including only the
continuous part. Fig.11 illustrates this method applied on the AE signal measured on the hydraulic motor. Note
in this case it is actually not necessary to use any method, because the bursts are clearly visible in the raw AE
signal. Still, the method results in a signal where the bursts are even more evident. Note also how the amplitude
modulation present in the portion between the bursts has also been removed. The amplitude modulation is due
to electronic interference and, therefore, is not real AE. Since the interference is present in both signal portions,
the dB spectrum difference is maximum in the frequency region where the AE burst predominates.

4 Conclusions

A method for data reduction of acoustic emissions has been presented, which additionaly retains the key
information for machine failure diagnosis. The method consists in the construction of the TriSignal, a synthetic
signal enveloping the characteristic bursts present in the raw AE. In some of the examples shown, the reduction
was of 99.997% with respect to the raw AE signal, and of 99.440% with respect to the envelope of the AE.
Further processing of the TriSignal using the Lomb-Scargle periodogram results in the TriSpectrum, which is
an estimator of the frequency structure of the envelope and, therefore, a valuable tool for failure diagnosis. The
most important part of the method relies in the correct identification of the bursts. Previous to the application
of the method on a particular case, an study should be preformed to analyze the characteristics of the AE and
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Figure 11: dB spectrum difference method used to improve signal-to-noise ratio of the AE signal. (a) Top:
individual spectra of portion including burst (red) and portion not including burst (blue); bottom: dB spectrum
difference. (b) Raw AE signal (blue) and filtered AE signal (red).

find the filter which maximizes the presence of the bursts with respect to the rest of the signal.
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