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Abstract 
The grinding contact of a cylindrical grinding process may have unstable vibration behaviour such as 
regenerative chatter or surface pattern generation. This will have strong effect on the surface quality of the 
work piece. The stability analysis of grinding contact has been studied in literature widely. Typically, the 
normal direction is considered. In this paper the tangential vibrations of the contact are considered by 
focusing to the rotational movements at the contact. A numerical model of the rotational vibration system is 
derived which includes the grinding wheel, shaft, belt transmission and motor subsystem and the work piece-
motor subsystem. The normal and tangential cutting and sliding forces are coupled by the friction and the 
grinding penetration term and this leads to the description of the link between the tangential vibrations and 
the normal direction stability behaviour. In the results the time domain simulations and the stability 
conditions in two different running speed cases are presented. 

 
1 Introduction 

The cylindrical grinding is a manufacturing process to produce high quality surface finish on a 
cylindrical work piece surface. Grinding in general belongs to the material cutting processes such as turning 
and milling in which chips are removed by a machine tool. The vibration dynamics of these cutting processes 
is studied in literature widely. Some examples are for example: Thompson introduced the classical theory of 
chatter growth with double delays [1]; Moon  explored the dynamical phenomena of several manufacturing 
processes [2]; Nayfeh considered the chatter control and the stability analysis under regenerative cutting 
conditions [3]; Altintas described the chatter vibrations in cutting with delay [4]; Stepan analysed cutting 
process stability by including double delay effects [5]; and Liu (et al) investigated double delay stability of 
cylindrical grinding [6]. 

The cylindrical grinding dynamics is characterized by the regenerative chatter phenomenon which is 
related to the time delay effects. The instability of the grinding process results from the contact interaction of 
the grindstone-work piece and may cause damage and failure such as unacceptable surface finish and pattern 
generation. The first chatter source is the work piece due to the overlap of the grinding path on its surface. A 
regenerative excitation source is generated to the system because the previous surface history is reintroduced 
to the grinding contact. The second chatter source is the grindstone itself because the surface of the 
grindstone also loses material slowly and these out-of roundness damages carry on by the rotational 
movement into the grinding contact interaction. Both of these chatter sources one from the work piece and 
another form the grindstone can be described as individual delay terms in the system dynamics modelling 
and equations. 

The vibrations of the grinding system in the tangential direction are not considered usually because the 
obvious vibration behaviour clearly is in the normal direction, and the dynamical modelling at this direction 
provides sufficient equations to determine the stability conditions. The tangential direction, however, 
provides some additional information about the chatter vibration development in the grinding system. The 
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main motivation to investigate the tangential direction is to increase the ability to observe the unstable 
chatter vibration phenomenon. In this paper the tangential direction is considered by modelling the rotational 
degrees-of-freedom system for the grinding vibrations.  

 
2 Modelling of grinding system dynamics 

The dynamics of cylindrical grinding system will be described now. The system equations will be 
presented at first and the grinding force together with the time delay terms will be presented in the next 
chapter. Figure 1 illustrates the rotational dynamics system and its members. 
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Figure 1: The rotational grinding system with the grindstone, the work piece, the shafts, the belt transmission 

and the drives. 
 
The system equations can be written in the matrix form as 
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where i  and i  are the rotational degrees of freedom, iJ  and iI  the inertias, ik  the torsional stiffness, bk  
the belt stiffness, ir  the radiuses and TF  the tangential grinding force (compare with Figure 1). The belt 
transmission system can be idealized by letting 
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where tri  is  the  transmission  ratio  of  the  belt  system.  This  leads  to  the  more  reduced  system presented  in  
Figure 2. 
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Figure 2: The reduced rotational grinding dynamic system. 
 
The reduced system equations are 
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Now, by introducing the variable transformation for the degrees of freedom of each shaft like 
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the system equations take the forms 
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Finally, the vibrations at the normal direction can be described by 2-degrees-of-freedom model presented 

in Figure 3. The system equations in the normal direction are 
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Figure 3: The grinding dynamic system in the normal direction. 
 

where ix  are the translational degrees of freedom, im  the masses, ic  the damping coefficients, ik  the 
stiffness, and NF  the normal grinding force. The complete system dynamics equations consists of (5), (6) 
and (7). 

 
3 Grinding contact forces 

The grinding forces will be described now. The normal and tangential grinding forces of the surface 
grinding case presented in [7] and [8] are used. It is assumed that it provides reliable accuracy and the 
equations can be updated to correspond to the cylindrical geometry in future contexts if necessary. 

 
3.1 Surface grinding forces 

In the normal direction one can describe the cutting penetration in the work piece at the following way 
(Figure 4) [9]. Let  be the total penetration and the parameter  defines the material removal ration between 
the work piece and the grindstone. Thus, the total material removed is  and  being close value to unity. In 
the tangential direction the chip removal regions can be divided to cutting (chip formation) and sliding zones. 
The force equation composition differs in these two zones due to the nature of cutting process at each zone 
and this lead to two terms in the grinding force equation in the normal direction. The zone between them is 
not considered. The tangential grinding force is related to the normal force by friction.  
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Figure 4: The normal direction penetration in the grinding contact and the cutting and sliding zones. 
 
Thus, the normal and tangential grinding forces are 
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     NsNcN FFF         (8) 
     TsTcT FFF          (9) 

 
where NcF  , NsF , TcF and TsF are the normal and tangential cutting and sliding force terms. These are 
expressed as 
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where iK  are the experimental grinding force coefficients, Gv  and wv  the contact velocities of the 
grindstone and the work piece, b is the width of the grindstone. Parameters Ap  are  related  to  the  sliding  
friction terms and  is the friction coefficient. Because of the separate force terms in (8) and (9) one can into 
account only desired ones and investigate their effects individually in the simulations. 

 
3.2 Time delay terms 

The grindstone is moving horizontally on the surface of the work piece. The grinding path overlaps itself 
at some degree because this ensures that the whole surface will be ground. This horizontal movement 
specified two zones in which the grinding force with the delay effects are described as illustrated in Figure 5.  
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Figure 5: The overlap of the grinding path and the two different force zones. 
 

The parameter  specifies the overlap ratio. Firstly, the fresh cutting zone lies on the work piece side and 
there is no delay term from this zone. Secondly, on the overlap surface area the delay effect is generated by 
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the delay of the work piece w. Finally, from the whole grindstone surface are the delay effect is generated by 
the delay of the grindstone g. These three effects compose the total grinding forces with delays by 
substituting the penetration values to equations (10) to (13) as 
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where 
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and nom is the nominal cut depth for the grinding. 
 
4 Methods and analysis 

The time integration method used in the simulations in MATLAB  is described in [10]. The method 
belongs to the Newmark time integrator family and it is also known as the average constant acceleration 
method. The method is implicit, uses a predictor-corrector approach and it includes the Newton-Rhapson 
iteration procedure. The iteration matrix used is 
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where I  and I  are the time integration coefficients and h is  the  time  step.  The  model  also  has  a  small  
Rayleigh damping with the damping matrix 
 
   KMC RR ,         (18) 
 
where R  and R  are damping coefficients. A PD-speed controller is defined by 
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where d  is the desired rotation speed and KP and KD the control coefficients.  

The time integration procedure must be upgraded for the time delay equation. The method of steps can 
be used for the time domain solution of time delay equations [11]. For a delay differential equation an initial 
history  period  is  required  as  a  start  up  for  the  delay  effects  to  develop.  The  method  of  steps  procedure  
specifies an initial function on interval of [t0- , t0], where  is the delay time (Figure 6). This so-called 
initial period of the delay equation is solved without delay effects at the beginnig. Then the delay differential 
equation can be solved by taking the delay term values from the history . 

In the case of rotational vibrations the time delays are non-constant and they are directly related to the 
rotation speeds of the grindstone and the work piece. This requires more complex solution procedure because 
the exact values of the delayed variables are not directly available from the data of previous time increments 
due to the discrete solution. The values must be estimated by a two-step polynomial interpolation procedure 
[8]. In the first step, the unknown value of the time delay is determined from the inverse curve of the rotation 
angle i  by subtracting 2  from its current value and then interpolating the delayed time t . In the second 
step the unknown values of the delayed variables are interpolated according to the values of the delay times. 
This  procedure is  implemented in a  code but  it  is  possible  to  introduce it  for  example in the SIMULINK  
environment. 
 



7 

 
 

Figure 6: The initial history period x0(t) in the method of steps procedure. 
 

The general objective of the analysis in this paper is to illustrate the stability characteristics of the six 
degrees-of-freedom grinding system. It is well known that the system has multiple unstable regions 
depending on the values of the key system parameters. As discussed in the introduction this topic has been 
considered in the literature widely. Typical parameters defining the stability are the running speeds (the time 
delay values) and for example the stiffness of the grinding contact. The primary objective is to investigate 
how the coupling of the normal and tangential grinding forces influences to the vibrations in the rotational 
direction. The unstable behaviour will develop at the normal direction and the vibrations reflecting this at the 
tangential direction are at the interest. 
 
5 Numerical results and discussion 

The numerical example is created based on the parameters from a heavy industrial grinding machine 
used for the grinding of large cylindrical objects made from steel. The mass of the grindstone is 250 kg and 
the work pieces can have masses up to 4000 kg. The horizontal lowest natural frequency of the grindstone 
mount is about 200 Hz and the work piece is long cylinder with natural frequency between 10 to 20 Hz. 
Radiuses of the grindstone and the work piece are 250 mm and about 200 mm. The width of the grindstone is 
80 mm. The running speeds are 20-30 Hz and less than 1 Hz, respectively. The average cutting depth is 20 

m and the parameters K1 and K3 in (10) and (11) are about 300 106 N/m2.  
With these system parameters a stability boundary can be found between the grindstone tangential 

contact velocities of 25 m/s and 30 m/s. Thus, two simulation cases were chosen to illustrate the vibration 
behaviour of the grinding system. At the running velocity 20 m/s (about 13 Hz) the system is stable and at 35 
m/s (about 22 Hz) it is unstable. Only the cutting force terms were considered in the simulations. Figure 7 
shows the normal force and the work piece rotational vibrations at the stable case. The vibrations due to the 
initiation of the grinding contact at the beginning are dying out when the grinding continues. The delay effect 
carries on in the simulation but it does not act in unstable fashion. The model has very modest viscous 
damping at the normal direction in the simulations, which is not large enough to cancel the delay excitation 
sources. Figure 9 illustrates the work piece motor dynamic behaviour. The bigger scale waviness in the 
figures is due to the PD speed control. 

Figures 9 and 10 show the unstable case. Now the chatter vibration effect is developing in the normal 
direction clearly. Also at the tangential direction the chatter becomes detectable even though the scale of the 
effect  seems to be at  a  smaller  range.  Important  remark is  that  the PD speed control  does not  react  to  the 
tangential chatter vibrations because the control parameters were chosen in such way that the control behaves 
rather weakly. The aim is to investigate the delay effect phenomenon instead of controlling it. It is, however, 
obviously possible to use PI or PID control for the speed which can compensate the chatter vibrations at the 
tangential direction, but even in this case the chatter becomes detectable then from the control signals. The 
observation of the rotational degrees-of-freedom seems to provide a feasible method to detect the chatter 
vibrations in the cylindrical grinding system. 
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Figure 7: The stable case. The normal force is above and the rotational vibration of the work piece below. 

The grindstone’s contact velocity is 20 m/s and the work piece’s 1m/s. 
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Figure 8: The stable case. The angular velocity of the work piece is above and the torque of the work 
piece motor below. The grindstone’s contact velocity is 20 m/s and the work piece’s 1m/s. 
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Figure 9: The unstable case. The normal force is above and the rotational vibration of the work piece below. 

The grindstone’s contact velocity is 35 m/s and the work piece’s 1m/s. 
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Figure 10: The unstable case. The angular velocity of the work piece is above and the torque of the work 

piece motor below. The grindstone’s contact velocity is 20 m/s and the work piece’s 1m/s. 
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Conclusions 

The numerical solution of the delay equation seems to work well. The first main purpose of this solution 
procedure is to provide a tool for the stability analysis of complex delay systems. An alternative use could be 
for measurement data verification to detect the presence of delays in the system measured. Further work is 
required to verify the modelling approach of this paper. 
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