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Abstract 
An Artificial Neural Network (ANN) based automated system was developed to diagnose a range of 

different faults in internal combustion (IC) engines, including combustion faults (misfire) and mechanical 
faults (piston slap and bearing knock). A critical issue with ANN applications is the network training, and it 
is neither feasible nor economical to expect to experience a sufficient number of different faults to obtain 
sufficient experimental results for the network training. Therefore, new simulation models, which can 
simulate combustion faults and mechanical faults in engines, were developed and are reported in this paper. 
In order to evaluate and update the simulation models, a small number of experiments with combustion faults 
and mechanical faults were carried out and the experimental vibration signals were studied first. The 
torsional vibration of the crankshaft and angular acceleration of the engine block were used to detect engine 
misfires. In contrast to the misfires, it has been demonstrated that an appropriate signal processing approach 
for diagnosis of the mechanical faults is envelope analysis of the vibration signals. The simulated signals 
were processed by the same signal processing techniques as the measurements and the selected features from 
the processed data were used to train the networks. The processed simulated data, with added random 
variations of the same order as in the measurements, provided sufficient data for the training of the ANNs. 
Finally, it was demonstrated that the networks trained on simulated data can efficiently detect both the 
combustion faults and mechanical faults in real tests and identify the location and severity of the faults as 
well. 

 
1 Introduction 

Most engine faults can be classified into two categories: combustion faults and mechanical faults. 
Misfire is a very common combustion fault for internal combustion (IC) engines and many works have been 
put forward to study vibration-signal-based misfire diagnosis. For the misfire diagnosis, the vibration based 
condition monitoring can be further divided into two types: one is based on the translational acceleration 
signals measured on the engine block [1-3], while the other is based on the torsional vibration signal of the 
crankshaft [4-8]. Owing to increased dynamic forces from excessive wear and larger clearances at the 
piston/cylinder wall interface and the journal/bearing interface, piston slap faults and big end bearing knock 
faults are considered to be two critical mechanical faults in engines. Many researchers have studied the 
mechanism of piston slap; in general, the aims of these works were focussed on the piston design, including 
the geometrical and lubrication aspects [9-12]. Meanwhile, many works have also been devoted to the 
dynamic response of the journal bearings with non-negligible clearance in the IC engine (slider-crank 
mechanism) [13-15]. But only a limited number of researchers have investigated the technology of using the 
measured vibration signals for the diagnosis/prognosis of piston slap faults [16, 17] and bearing knock faults 
[18]. 

Moreover, when these vibration-based techniques are applied in a real situation, the faults cannot 
automatically be diagnosed from the analysed vibration signals. Artificial Neural Network (ANN) techniques 
should be a potential solution to the problem of automated diagnostics of different faults in IC engines. Much 
research has shown that ANNs are a very efficient method to differentiate various faults of rotating machines 
[19-23]. A critical issue with ANN applications in machine condition monitoring is the network training, and 



2 

it is neither likely nor economical to experience a sufficient number of different actual faults, or generate 
them in seeded tests, to obtain sufficient experimental results for the network training. Simulation is proving 
to be a viable way of generating data to train neural networks to diagnose and make prognosis of faults in 
machines. Very little has been done on simulation of faults in IC engines, primarily limited to combustion 
faults, which had been shown to affect the torsional vibrations of the crankshaft. An example was given for 
simulation of misfire in a large 20-cylinder diesel engine [8].  

In this paper an ANN based system was developed to automatically diagnose a range of different faults 
in IC engines, including combustion faults (misfire) and mechanical faults (piston slap and bearing knock). 
In order to obtain sufficient data for the training of ANNs, simulation models were developed in the 
simulation software packages, to simulate a range of combustion faults and mechanical faults in engines. The 
simulation models were validated and updated by a series of experiments. Advanced digital signal processing 
techniques were applied on the experimental and simulated vibration signals. The torsional vibration of the 
crankshaft and the roll rotation of the engine block were used for the diagnostics of misfires.  Because the 
vibration signals from piston slap faults are typical second order cyclostationary signals, envelope analysis 
was used to process the vibration signals for their diagnosis. The input vectors of the ANNs were 
extracted/selected features from the processed signals. The automated diagnostic system consists of three 
stages: fault detection, fault localization and severity identification. The ANN systems were trained entirely 
by the simulated data and tested using real experimental cases.  

 

2 Experimental setup 
A series of vibration signals in normal condition and with a range of faults were recorded on a Toyota 

four cylinder gasoline engine at UNSW. Five accelerometers were used to record the vibration on the surface 
of the engine block, and their layout (limited by accessible mounting bosses) is shown in Figure 1. Two 
proximity transducers were used to pick up a once-per-rev tacho signal and a ring gear encoder signal (tooth 
passage). The cylinder pressure was measured by a special spark plug with integrated cylinder pressure 
sensor. Three constant speed conditions were selected for the engine tests: 1500rpm, 2000rpm and 3000rpm. 
For each speed, there were three different load conditions: 50Nm, 80Nm, 110Nm. Two stages of mechanical 
fault were seeded into the test engine for the two fault types. Cylinder 1 was bored to get three times normal 
clearance (1st stage piston slap fault) and six times normal clearance (2nd stage piston slap fault). After that, 
the crank journal of cylinder 2 was ground to increase the big end bearing clearance to two times normal 
clearance (1st stage bearing knock fault) and four times normal clearance (2nd stage bearing knock fault). 

 
Figure 1: Accelerometer layout 

 

3 Experimental and simulation results from combustion faults 
The torsional vibration signal is obtained by phase demodulation of the ring gear encoder signal. The 

unwrapped phase angle demodulated from the first harmonic of the encoder signal represents the torsional 
vibration signal of the crankshaft when divided by the number of teeth (120) to get it in terms of the angular 
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displacement of the shaft. Next the angular displacement of the shaft was differentiated to get the angular 
velocity. Finally the angular velocity was synchronously averaged for pairs of cycles (to check the validity of 
the average). The roll rotation of the engine block was analysed from the averaged difference of a pair of 
translational accelerations. The signals from accelerometers 5 and 7 were subtracted to remove the 
translational components. The subtraction results were divided by the distance between the two measurement 
points to calculate the pseudo angular acceleration of the block. It is called pseudo angular acceleration 
because the measurement points are not in line with the centre of gravity (CG) of the engine (their line is not 
parallel to the principal axis of the engine either) and the calculated angular acceleration is mixed with other 
rotational motions. This approach was taken because the position of the CG was not known exactly. 

In order to simulate the misfire phenomena under various speed/load conditions, the most critical 
variable, cylinder pressure, should first be calculated. The chamber pressures can be calculated by using 
Wiebe’s functions, for which the details for this engine can be obtained from the former work [24, 25]. The 
calculated chamber pressure is also a critical variable for the simulation models of mechanical faults in the 
following section. From the mechanical viewpoint, to run and validate these models, the parameters of the 
engine components should be measured or calculated first. Besides the inertia properties of the engine 
components, the inertia properties of the whole engine and the characteristics of the engine supports are 
important parameters for the simulation of pseudo angular accelerations. Vibration based methods have been 
used to identify these parameters, including the mass line method and the modal property method. The 
details of the measurements of these parameters can be obtained from the former work [26]. 

 

     
Figure 2: Experimental and simulated torsional vibration for the misfires in the cylinder 1 

 

  

Figure 3: Experimental and simulated pseudo angular accelerations of the engine block for the misfires in 
cylinder 1 

 
Both the torsional vibration of the crankshaft and pseudo angular accelerations were simulated in LMS’ 

AMESim. For the simulation of torsional vibration of the crankshaft, even though the crankshaft of the 
experimental engine is quite rigid, the connections between the individual cylinders were modelled as rotary 
spring and damper sub-models and the effects of torsional modes were included in the modelling (though 
found to be negligible). Therefore the simulated torsional vibration model can be easily extended to larger 
engines. An example of experimental and simulated torsional vibration with misfires happening in cylinder 1 
at 3000rpm/50Nm is shown in Figure 2. An example of experimental and simulated pseudo angular 
accelerations with misfires happening in cylinder 1 at 1500rpm/50Nm is shown in Figure 3.  It will be found 
that the simulated waveforms for the misfires showed a relatively good correspondence with those from the 
experiments. 

In order to extract/select features for input to the ANNs, inspired by the pattern recognition research of 
Desbazeille et al. [8], polar diagrams of the Fourier coefficients of the processed vibration waveforms were 
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employed to interpret the harmonics of the waveform patterns. It was found that the torsional vibration signal 
is easier and more straightforward to interpret than the block angular acceleration signal for misfire 
diagnosis, though this would only apply for a rigid crankshaft. However, based on both measured torsional 
vibration and pseudo angular acceleration of the engine block, it was not difficult to reach the conclusion that 
the ratio of the amplitudes of the 1st and 4th harmonics could be used for the misfire detection, and the phase 
of the 1st harmonic could also be used for the misfire localization 

 

4 Experimental and simulation results for mechanical faults 

4.1 Envelope analysis 

The vibration signals from both mechanical faults (piston slap and bearing knock) are typical second 
order cyclostationary signals, so an appropriate signal processing approach for their diagnosis is envelope 
analysis. The “fast kurtogram” developed by Antoni [27] can be used as an aid in selecting the optimum 
demodulation band before performing envelope analysis. Two examples of the results from the “kurtogram” 
for the piston slap faults are shown in Figure 4, where the brown area indicates the most impulsive frequency 
range.  

                      
Figure 4: Results from “kurtogram” for piston slap faults 

 

 
Figure 5: Raw acceleration signal and squared envelope after filtering  

for the 2nd stage piston slap fault at 2000rpm/110Nm 

In order to have a fixed basis for comparison, for all cases, the frequency bands were adjusted and a 
common frequency band was found (somewhat broader than those in the two kurtograms). The most 
important premise of the adjustment was that there is no significant feature change or loss in the subsequent 
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Fourier analysis of the envelope. Examples of the raw signals and filtered squared envelopes with a piston 
slap fault are shown in Figure 5. It can be seen that the diagnostic information for mechanical faults became 
more obvious after the envelope analysis. In particular it was also found that, for low speed conditions, the 
bearing knock faults are not easy to detect from the change in the squared envelope signal. Actually, it was 
found that at lower speeds, the intensities of the raw accelerations with bearing knock faults have only a 
small increase from those in normal conditions, but at higher speed (3000rpm), the increases were very 
obvious (the change in audible sound was also quite clear at higher speed during the experiments). 

Due to the transient characteristics, the diagnosis of mechanical faults is more complicated than that for 
misfires and more harmonics of the Fourier coefficients (the first forty harmonics) should be taken into 
account. However, the candidate features have different sensitivities to the different conditions of the engine 
and only some of them were found useful for the pattern recognition of the mechanical faults. Moreover, it 
requires a large amount of computing resources if all features are to be input into the ANNs. Thus it is 
important to select the optimal features to input into the ANNs, especially for the amplitude feature selection. 
A GA algorithm [28] was applied to find the best amplitude features for the diagnostics of piston slap or 
bearing knock faults. In order to find the best phase features to identify which cylinder has a piston slap or 
bearing knock fault, the scattering properties of the phases of the first 20 harmonics were studied. It was 
found that the phases of higher harmonics are more scattered and the most useful information to identify the 
localization of mechanical faults was contained in the lower harmonics. Therefore, the best phase features 
were selected from the first ten harmonics. The detail of the feature selection for the mechanical fault 
diagnosis can be obtained from the former work [29]. 

 

4.2 Simulation of piston slap faults 

During the engine operation, when the resultant transverse force exerted by the connecting rod changes 
direction, the piston leaves the side of the inner wall it was previously held against, and moves to the other 
side of the inner wall. If the lateral acceleration of the piston (induced by the transverse force) is big enough 
and the interval until the next time the force direction changes is long enough, the piston will move across 
the clearance and collide with the opposite side of the inner wall. The impacts caused by oversize clearance 
will then excite more intensive vibration of the engine block. The side-thrust force Fy11 can be solved by 
Equation (1). 
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where R is the crank radius. b is the centre-to-centre connecting rod length. θ is the crank angle. ω is the 
rotating speed of the crankshaft.  Fg is the combustion force and Fiz is the axial inertia force of the piston. mp 
is the mass of the piston. 
 

 
  

Figure 6. Interaction model between the piston and inner wall 
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Similar to the models from [10] and [12], a model was developed to represent the dynamic 
characteristics of the piston and inner wall when there is an oversized clearance. In this model, the piston and 
inner wall were modelled as lumped masses. The effect of the piston rings and lubricating oil was modelled 
as a viscous damper and spring between the piston and inner wall (shown in Figure 6). The spring and 
damper are of fixed length independent of the clearance, so that they only come into play when the piston is 
close to the inner wall. The end of the spring/damper was fixed to the engine block. When the piston contacts 
the surface of the inner wall, the dynamic model enters a boundary condition (dry contact) and the effects of 
the spring and damper are negligible. The impact force caused by the elastic contact is solved using Hertz 
theory. 

A model was built in the Motion module of LMS’ Virtual.Lab for the simulation of piston slap faults. 
Because it had been found that the useful information for the piston slap fault diagnosis lies in the processed 
envelope signals, the simulations only need to produce the correct envelope signals rather than raw 
acceleration signals. An example of the comparison between the experimental envelope and simulated with 
piston slap fault at 2000rpm/50Nm is shown in Figure 7. It can be seen the simulated envelope signals have 
good agreement with experiment. 

 

 

  
Figure 7. Simulated and experimental envelope signals with 2nd stage piston slap fault 

 
4.3 Simulation of bearing knock faults 

In the simulation system of bearing knock faults, by adjusting the clearance, the impact forces with 
oversized bearing clearances were first simulated and later the accelerations on the engine block were 
calculated using the measured FRFs to the measurement point. The (2D) model of impact force is built in the 
software Simulink. Even though it is feasible to model the transfer function from the impact point of the 
big end bearing to the measurement surface point on the engine block, such as by using a lumped parameter 
or FE model, for convenience in this paper, the spectra of simulated accelerations were obtained by 
multiplying the simulated forces and measured transfer functions in the frequency domain. The simulation 
model involves the interactions between two systems: kinematic/kinetic system and hydrodynamic system. 
The effect of the lubricating oil was solved using Reynolds equation. The scheme of the interaction between 
the kinematic/kinetic system and the lubrication system is shown in Figure 8. 
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Figure 8. Interaction between kinematic/kinetic system and lubrication system 
 

If an oversized clearance is considered in the big end bearing, the piston and connecting rod can be 
modelled as one motion subsystem and the crank can be modelled as another motion subsystem. The length 
from the centre of the small end to the centre of gravity (CG) of the connecting rod is b1 and the length from 
the centre of big end to the CG of the connecting rod is b2. The friction force on the piston has been 
considered negligible compared to the combustion force and the vertical inertia force of the piston. The 
lubricant force in the bearing can be represented by two components: horizontal Fy and vertical Fz (Y 
horizontal and Z vertical). The forces on the bearing and the journal have the same values but in opposite 
direction. Fyc equals Fyb and Fzc equals Fzb and all of them are the hydrodynamic forces from the lubrication 
oil. For the modelling of bearing knock faults, the clearance between the piston and the inner wall was 
ignored, so the piston has no horizontal motion (but there is a horizontal reaction force from the inner wall). 
The small end bearing connecting the piston and connecting rod was also assumed to be a perfect joint. For 
the whole system, there are three degrees of freedom: crank angular motion, connecting rod angular motion 
and the translational motion of the piston in the Z direction. The kinematic equations can be written as: 
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where Ic is the moment of inertia of the crankshaft (plus flywheel), Tfric is the friction and pumping torque of 
the engine, Tload is the external load imposed on the engine, mp is the mass of the piston and mb is the mass of 
the connecting rod and Ib is the moment of inertia of the connecting rod about its CG.  pz and pz are the 

velocity and acceleration of the piston in the Z direction. 
 

 
Figure 9. The geometry of the big end bearing 

 
The lubrication force can be solved by Reynolds equation. As shown in Figure 9, there are two 

coordinate systems. One is the global YZ system and the other is related to the eccentricity line rt system, 
based on the diameter through the point of minimum oil thickness. α is the coordinate angle between the 
positive r direction and the positive Y direction. If e is the eccentricity and c is the radial clearance, the 
eccentricity ratio ε can be calculated as e/c. δ is the angle in the circumferential direction starting from the 
negative axis of r. The length to diameter ratio of the big end bearings in the engine is smaller than 0.5, so 
the oil film pressure distribution in the big end bearing can be approximated as a short journal bearing [30]: 
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where h is the thickness of the oil film and (1 cos )  h c . The lubrication force can be integrated about 
the angle δ. The normal force Fr and tangential Ft can be written as: 
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where Rb is the radius of the bearing, δi is the start angle and δo is the end angle of the integration. The 
Gümbel boundary condition is the most reasonable for the force integration of short journal bearings. Only 
the positive pressure section is considered and it is assumed there is a π oil film in the bearing. So in the 
integration, δo equals δi plus π. Finally the force components in the global YZ coordinates can be derived 
using the transformation matrix about the angle coordinate α. 

As mentioned before, the bearing knock fault can be diagnosed at higher engine speed (3000 rpm) from 
the change in the squared envelope signal but it is very difficult to detect the faults at lower speeds (1500 
rpm and 2000 rpm). During the simulation, the same problem was also encountered. It is very difficult to 
adjust the model to get agreement between the experimental results and simulated results at lower speeds, so 
simulation is currently limited to the higher speed condition (3000 rpm). As for the simulation of the piston 
slap faults in the preceding section, the target of the simulations here is to produce the envelope signals as 
accurately as possible rather than the raw acceleration signals, so the envelopes of the simulated vibration 
signals were calculated. An example of the simulated and measured envelopes with a bearing knock fault is 
shown in Figure 10. It can be seen the simulated envelope signals have a good match with experiment. 

 

 

 

Figure 10. Simulated and experimental envelope signals with the 2nd stage bearing knock fault  
 

5 ANN system 
Three-stage network systems were proposed to diagnose and make prognosis of faults in an engine (as 

shown in Figure 11). The first stage is the fault detection stage where the inputs to the networks are the 
selected amplitude features of the simulated signals. In the second stage, the neural network localizes which 
cylinder has faults and the inputs to the network are the selected phase features of the simulated signals. In 
the third stage, based on the detection and location results, the severity of the faults is identified by the 
selected amplitude features. The detection stage and severity stage were enacted by MLP (Multi Layer 
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Perceptron) networks, MLP1 for detection and MLP2 for severity identification. PNNs (Probabilistic Neural 
Networks) were used to identify which cylinder has faults. The outputs of the PNN are the integer numbers 
1, 2, 3 and 4, which directly indicate the cylinder number. 
 

 
Figure 11: Structure of the three-stage ANN based virtual sensor system 

 
5.1 For misfire diagnosis 

For the automated diagnosis system for misfires, there are 120 cases in total, 36 cases from the 
experiments and the remaining 84 cases from the simulations. The distribution of the different conditions 
from experiment and simulation is shown in Table 1.The networks were trained using only simulated cases 
and tested by experimental cases. So in the MLP1, the training group consist of 84 simulated cases and the 
test group consists of all 36 experimental cases. After the detection stage, the training and test cases for the 
PNN were reduced to the group of all cases with misfires (misfires in different cylinders). Likewise, the 
training and test cases for the MLP2 were reduced too, so the severity identification became more specific. 
As discussed in the preceding sections, the amplitudes of the 1st and 4th harmonics are suitable input 
features for the MLP1 and MLP2 and the phase of the 1st harmonic for the PNN. 

 

 
 

Table 1: The distribution of data for misfire diagnosis system 
 

A fitness criterion was introduced to evaluate the performance of the MLP1: 
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where, ANN is the output of the MLP and VAL is the corresponding target number. N is the total number of 
the test group (36). A higher fitness criterion means poorer MLP performance. The trial and error procedure 
for the number of hidden neurons is also based on the values of fitness criterion.  

The final results of the MLPs and the PNN are shown in Table 2. It can be seen that because the pseudo 
angular acceleration is subject to more complicated influences and is more difficult to simulate, its fitness 
criteria are worse than those from the torsional vibration method. The final results have also shown that the 
PNN successfully localized which cylinder has misfire: eight cases in cylinder 1, five cases in cylinder 2, 
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five cases in cylinder 3 and three cases in cylinder 4.  The results in the third column of Table 2 show that 
the MLP2 also identified the severity of the misfires with reasonable accuracy. 

 

 
Table 2: Results of ANNs for misfire diagnosis 

 

5.2 For piston slap fault diagnosis 

The simulated signal for a certain speed/load condition is deterministic, but in reality the measurement 
signals have small deviations in different test scenarios, so a variation in the simulated signals should be 
instituted to create representative cases for the ANN training. The standard deviation of the variations was 
set by analysing the normal conditions from experiments and was applied to the simulated enveloped signals. 
The piston slap faults were also simulated in different cylinders for each speed and load condition and all the 
simulated signals were instituted with variations.  

In the automated diagnosis system for piston slap faults, all training data are from the simulated 
(squared) envelope signals. The training cases included 288 piston slap faults and 112 cases with normal 
piston clearance. 49 experimental cases (some of them having combustion faults) were used to test the 
networks, of which 28 cases are with piston slap faults. For the PNN, the number of training cases is reduced 
to 288 and the number of test cases is reduced to 28. In the MLP2 of the severity identification stage, the 
training and test group are reduced to piston slap fault cases for the individual cylinder only. The output of 
the MLP1 is from 0 to 1; 0 for normal condition, and 1 for fault condition. In the severity identification stage 
(MLP2), the output 0.5 means three times oversized piston slap faults and 1 means six times oversized piston 
slap faults. The outputs of MLP1 are shown in Figure 12. In reality, there are piston slap faults for cases 1 to 
18 and 33 to 42. The fitness criterion in Equation (7) was also introduced to test the performance of MLP1. 
The final fitness criterion is 0.2253, so the MPL1 100% correctly detected all piston slap faults. 

 

  
Figure 12: Output of MLP1 for the piston slap faults 

 

 
Figure 13: Output of MLP2 for the piston slap faults 
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For the localization of the piston slap faults, using the selected phase features as inputs, the PNN also 
achieved a good classification result. The results 100% match with the real situation of the test cases: all 
piston slap faults (28 cases) occurred in cylinder 1 in the experiments. After the piston slap fault detection 
stage, the severity identification became more specific. The output results of MLP2 are shown in Figure 13. 
It can be seen that MLP2 100% correctly identified the severity classification of the piston slap faults with a 
small deviation. It was also found that the MLP2 need more computing time (more epochs) to achieve the 
training goal and the final fitness criterion (1.8455) is much larger compared to the MLP1.  

 

5.3 For bearing knock fault diagnosis 

As for the other cases, the simulated signal with bearing knock faults is deterministic as well, but in 
reality the measurement signals have deviations; in particular the transfer function of the bearing knock fault 
is more complicated. Bearing knock faults were simulated in different cylinders at 3000rpm and three load 
conditions with both oversized clearances. Variations in the simulated signals were again instituted to create 
representative cases for the ANN training. As found from the experimental results, the peak values of the 
squared envelope of the bearing knock faults have no proportional relationship with the load, and they only 
have very small change at 50Nm, 80Nm and 110Nm.  

As before, an MLP was designed for the detection stage (MLP1) and a PNN was developed for the fault 
localization. Finally another MLP was used for the severity identification (MLP2). In total, 120 cases were 
used for the training of the MLP1 and all of them are from simulation. 72 training cases are with bearing 
knock faults and 48 training cases are free from bearing knock faults. 37 cases from real experiments were 
used to test the MLP1; those from cases 1 to 10 are with bearing knock faults and those from cases 11 to 37 
are with normal bearing clearance (but from 32 to 37 are with piston slap faults). The final results of MLP1 
are shown in Figure 14. Note that the output of case 37 is 0.3034, but if the threshold of the detection is taken 
as 0.5, the output would still be considered as free of bearing knock fault. Therefore, the conclusion is that 
the MLP1 100% correctly detected the bearing knock faults. The fitness criterion in Equation (7) was also 
used to evaluate the performance of MLP1 and the result is 0.6814. It is noteworthy because only one speed 
condition was considered in the ANNs of bearing knock faults, but all three speeds and three loads were 
considered in the ANNs of misfires, the fitness criterion of the MLP1 for the misfire detection is higher than 
that for the bearing knock faults. 

  
Figure 14: Output of MLP1 for the bearing knock faults 

 
Figure 15. Output of MLP2 for the bearing knock faults 
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output numbers from the PNN are 2, so the PNN 100% correctly identified which cylinder had bearing 
knock faults. The output 0.5 of the MLP2 indicates the 1st stage bearing knock faults and the output 1 
indicates the 2nd stage bearing knock faults. The output of MLP2 is shown in Figurer 15. It can be seen that 
the MLP2 also got 100% correct results for the severity identification.  

 

6 Conclusions 
ANN-based automated systems were separately developed for the diagnosis of misfire, piston slap fault 

and bearing knock fault in this paper. In order to get sufficient data for training the networks, new simulation 
models, which can simulate combustion faults and mechanical faults in engines, were developed. The 
simulation models were updated and optimized by a limited number of tests. Only the simulated data was 
used to train the networks and the experimental cases were used to test the performance of the networks. 
Each automated system consists of three stages: MLP1 for the detection stage, PNN for the localization stage 
and MLP2 for the severity identification stage. The selected amplitude features were used in the detection 
stage and severity identification stage and the selected phase features were used in the PNNs to localize 
which cylinder has a fault. For the two misfire diagnosis methods (torsional vibration and pseudo angular 
acceleration of the engine block), the ratios of the amplitudes of the 1st and 4th harmonics were used for the 
misfire detection and severity identification, and the phase of the 1st harmonic was used for the misfire 
localization. Envelope analysis of the vibration signals was applied for the diagnosis of piston slap and 
bearing knock faults. Compared to the feature selection for the diagnosis of misfire, the feature selection for 
the diagnosis of the two mechanical faults is more complicated, especially for the selection of the amplitude 
features. Advanced feature selection methods were applied to select the best amplitude features. The final 
results have shown that the designed automated systems can efficiently diagnose different fault conditions, 
including location and severity. 
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